Seismic performance assesment of a peruvian public school “module 780-actual” using nonlinear static and dynamic analysis

Autores/as

DOI:

https://doi.org/10.21754/tecnia.v35i1.2460

Palabras clave:

Desempeño sísmico, Análisis no lineal, Albañilería Confinada

Resumen

The seismic zone of Peru is located at the convergence boundary between the Nazca and South American plates. This interaction, known as a subduction zone, is responsible for the major historical earthquakes recorded over the past four centuries, with magnitudes reaching up to 8.8 Mw. For this reason, it is crucial to evaluate the seismic performance of essential buildings, such as the Peruvian public school “Module 780-Actual,” which combines a reinforced concrete system in the longitudinal direction and confined masonry in the transverse direction. This study proposes a methodology to assess the seismic performance of educational institution N°22459, located in the Ica region. For this purpose, confined masonry walls were idealized using diagonal compression struts, calibrated with concentrated plastic hinges located at their mid-length. Additionally, distributed plasticity fiber models were employed for the columns, while concentrated plasticity models were used for the beams. The nonlinear static analysis (pushover) was conducted to determine the capacity curve and identify the performance point. The pushover analysis results were compared with those obtained through a nonlinear dynamic analysis, which utilized representative seismic records from the national territory. Both approaches showed good agreement. In conclusion, the seismic performance of the structure in both evaluated directions achieved the “Life Safety” level for a maximum considered earthquake with a return period of 2475 years. The proposed methodology is recommended for preliminary evaluations of seismic performance in regular, low-rise structures incorporating confined masonry, using the pushover analysis as the primary tool.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

[1] J. C. Villegas-Lanza et al., “Active tectonics of Peru: Heterogeneous interseismic coupling along the Nazca megathrust, rigid motion of the Peruvian Sliver, and Subandean shortening accommodation,” J Geophys Res Solid Earth, vol. 121, no. 10, pp. 7371–7394, Oct. 2016, doi: 10.1002/2016JB013080.

[2] B. Borah, H. B. Kaushik, and V. Singhal, “Lateral load-deformation models for seismic analysis and performance-based design of confined masonry walls,” Journal of Building Engineering, vol. 48, 2022, doi: 10.1016/j.jobe.2021.103978.

[3] Instituto Nacional de Defensa Civil, “Impacto Socioeconómico y Ambiental del Sismo del 15 de agosto de 2007,” Lima, Perú, 2011. [En línea]. Disponible: https://biblioteca.igp.gob.pe/bib/13476

[4] N. Rankawat, S. Brzev, S. K. Jain, and J. J. Pérez Gavilán, “Nonlinear seismic evaluation of confined masonry structures using equivalent truss model,” Eng Struct, vol. 248, 2021, doi: 10.1016/j.engstruct.2021.113114.

[5] O. Cardenas, A. Farfan, G. Huaco, and A. Stavridis, “Seismic Performance Assessment of a Typical Peruvian Public-School Building,” in IOP Conference Series: Materials Science and Engineering, 2021. doi: 10.1088/1757-899X/1048/1/012014.

[6] L. Pasticier, C. Amadio, and M. Fragiacomo, “Non-linear seismic analysis and vulnerability evaluation of a masonry building by means of the SAP2000 V.10 code,” Earthq Eng Struct Dyn, vol. 37, no. 3, pp. 467–485, 2008, doi: 10.1002/EQE.770.

[7] G. Gonzales, A. Aguilar, and G. Huaco, “Incremental dynamic analysis of a 60 year old hospital with handmade brick masonry walls,” Proceedings of the LACCEI international Multi-conference for Engineering, Education and Technology, 2020, doi: 10.18687/LACCEI2020.1.1.375.

[8] M. Hysenlliu and H. Bilgin, “Seismic performance assessment of a typified school building damaged during the 2019 Albanian earthquakes,” IOP Conf Ser Mater Sci Eng, vol. 989, no. 1, Dec. 2020, doi: 10.1088/1757-899X/989/1/012030.

[9] J. M. C. Estêvão and C. Esteves, “Nonlinear seismic analysis of existing RC school buildings: The ‘P3’ school typology,” Buildings, vol. 10, no. 11, pp. 1–16, 2020, doi: 10.3390/buildings10110210.

[10] M. Willford, A. Whittaker, and R. Klemencic, Recommendations for the Seismic Design of High-Rise Buildings. 2008, doi: 10.13140/RG.2.1.2798.8085.

[11] Seismology Commitee Structural Engineers Association of California, Recommended Lateral Force Requirements and Commentary, Sixth Edition. California: Structural Engineers Association of California (SEAOC), 1996. [Online]. Available: https://archive.org/details/gov.law.seac.blue.1996

[12] Computers & Structures Inc., “CSI Analysis Reference Manual,” Nov. 2017. [Online]. Available: https://es.scribd.com/document/872518082/Analysis-Reference

[13] A. Parammal Vatteri and D. D’Ayala, “Classification and seismic fragility assessment of confined masonry school buildings,” Bulletin of Earthquake Engineering, vol. 19, no. 5, pp. 2213–2263, 2021, doi: 10.1007/s10518-021-01061-9.

[14] NIST GCR 10-917-5, “Nonlinear Structural Analysis For Seismic Design - A Guide for Practicing Engineers,” 2010. [Online]. Available: https://www.researchgate.net/publication/304395056_Nonlinear_Structural_Analysis_for_Seismic_Design-_A_Guide_for_Practicing_Engineers

[15] P. Fajfar and F. MA, “N2-A Method for Nonlinear Seismic Analysis of Regular Buildings,” vol. 5, Jan. 1988. [Online]. Available: https://www.researchgate.net/publication/246913483_N2-A_Method_for_Nonlinear_Seismic_Analysis_of_Regular_Buildings

[16] G. Guerrini, S. Kallioras, S. Bracchi, F. Graziotti, and A. Penna, “Displacement Demand for Nonlinear Static Analyses of Masonry Structures: Critical Review and Improved Formulations,” Buildings 2021, Vol. 11, Page 118, vol. 11, no. 3, p. 118, Mar. 2021, doi: 10.3390/BUILDINGS11030118.

[17] R. D. Santana Tapia, “Diseño sísmico por desempeño de estructuras de albañilería confinada,” master’s thesis, Universidad Nacional de Ingeniería, Lima, Perú, 2012. [Online]. Available: http://hdl.handle.net/20.500.14076/1156

[18] R. Perez-Martinez and L. and Esteva, “A New Model for Hysteretic Behavior and Damage for Confined Masonry Walls,” Journal of Earthquake Engineering, vol. 15, no. 6, pp. 942–958, Jul. 2011, doi: 10.1080/13632469.2010.544374.

[19] T. Spyridon, “Pushover analysis for seismic assessment and design of structures,” 2008, Accessed: Jun. 28, 2025. [Online]. Available: https://www.ros.hw.ac.uk/handle/10399/2170

[20] M. Sukrawa, G. Pringgana, and P. Yustinaputri, “Modelling of confined masonry structure and its application for the design of multi-story building,” MATEC Web of Conferences, vol. 276, p. 01034, Mar. 2019, doi: 10.1051/matecconf/201927601034.

[21] J. J. Pérez Gavilán Escalante, S. Brzev, E. F. Espinosa Cazarin, S. Ganzerli, D. Quiun, and M. T. Reiter, “Experimental Research Studies on Seismic Behaviour of Confined Masonry Structures: Current Status and Future Needs,” Buildings, vol. 13, no. 7, 2023, doi: 10.3390/buildings13071776.

[22] M. Coral, “Ensayos cíclicos en muros de albañilería confinada construidos con ladrillo king kong de fabricación industrial,” thesis, Pontificia Universidad Católica del Perú, Lima, Perú, 2018. [Online]. Available: http://hdl.handle.net/20.500.12404/13133

[23] Servicio Nacional de Capacitación para la Industria de la Construcción, “Norma E.070 - Albañilería,” Lima, Perú, 2020. [Online]. Available: https://cdn.www.gob.pe/uploads/document/file/2366661/56%20E.070%20ALBA%C3%91ILERIA.pdf

[24] Á. San Bartolomé, “Comportamiento Sísmico Experimental de la Albañilería - Tercera Etapa,” Lima, Perú, 2011. Accessed: Jun. 23, 2025. [Online]. Available: http://blog.pucp.edu.pe/blog/albanileria/

[25] Servicio Nacional de Capacitación para la Industria de la Construcción, “Norma E.030 - Diseño Sismorresistente,” Lima, Perú, 2020. [Online]. Available: https://cdn-web.construccion.org/normas/rne2012/rne2006/files/titulo3/02_E/2018_E030_RM-355-2018-VIVIENDA_Peruano.pdf

[26] A. Ilki and N. Kumbasar, Hysteresis Model for Reinforced Concrete Members. [Online]. Available: 2000.https://www.researchgate.net/publication/258837391_Hysteresis_Model_for_Reinforced_Concrete_Members

[27] S. Sáenz, “Curvas de fragilidad de estructuras de albañilería confinada empleando la base de registros sísmicos chilenos,” thesis, Universidad de Chile, Santiago de Chile, Chile, 2018. [Online]. Available: https://repositorio.uchile.cl/handle/2250/159573

[28] J. Cisterna, “Metodología para a evaluación del desempeño sísmico de viviendas sociales en albañilería confinada,” master’s thesis, Pontificia Universidad Católica de Chile, Santiago de Chile, Chile, 2015. [Online]. Available: https://masterieg.uc.cl/wp-content/uploads/2022/04/2015-10_JOS%C3%89_ANDR%C3%89S_CISTERNA_TOLEDO.pdf

[29] P. Lestuzzi and M. Badoux, “The gamma-model: A simple hysteretic model for reinforced concrete walls,” May 2003. [Online]. Available: https://www.researchgate.net/publication/37450365_The_gamma-model_A_simple_hysteretic_model_for_reinforced_concrete_walls

[30] G. Torrisi, “Analisis y diseño de estructuras de hormigon armado y mamposteria,” doctoral thesis, Universidad Nacional de Cuyo, Mendoza, Argentina, 2013. doi: 10.13140/RG.2.1.3634.0083.

[31] ASCE, Seismic Evaluation and Retrofit of Existing Buildings. American Society of Civil Engineers, 2017. doi: 10.1061/9780784414859.

[32] H. Elgohary, “A simplified trilinear concrete stress–strain curve: energy-based modeling of experimental data compliant with various codes,” Journal of Umm Al-Qura University for Engineering and Architecture, Mar. 2025, doi: 10.1007/s43995-025-00117-0.

Descargas

Publicado

2025-07-16

Cómo citar

[1]
G. Pérez Guillermo, J. I. Balarezo Salgado, y G. H. Gonzales Mejia, «Seismic performance assesment of a peruvian public school “module 780-actual” using nonlinear static and dynamic analysis», TECNIA, vol. 35, n.º 1, pp. 55–68, jul. 2025.

Número

Sección

Ingeniería Civil, Geotecnia y/o Sismoresistente

Artículos similares

<< < 1 2 3 4 5 6 7 8 9 10 > >> 

También puede Iniciar una búsqueda de similitud avanzada para este artículo.