Implementation of a laboratory for the outdoor characterization of photovoltaic technologies under the climatic conditions of Lima
Collaboration with the XXIII Peruvian Symposium on Solar Energy
DOI:
https://doi.org/10.21754/tecnia.v30i1.835Keywords:
Solar energy, Photovoltaic research laboratory, Characterization of photovoltaic modules, I-V curves, Curve plotterAbstract
This paper presents the design, implementation and first results of a Photovoltaic Research Laboratory developed at the facilities of the Materials Science and Renewable Energy Group (MatER-PUCP) of the Pontifical Catholic University of Peru in collaboration with the IDEA Research Group (Research and Development in Solar Energy) of the University of Jaen (UJA), Spain. This laboratory is one of the first in the country with the appropriate equipment for calibration and certification of different commercial and emerging technologies of photovoltaic modules in the Peruvian market. The results that are expected to be obtained through an extensive experimental campaign, which began in May 2019, may be offered to companies or other public institutions, such as detailed studies of the behavior and degradation of the different technologies of photovoltaic modules depending on the particular climatic conditions from the city of Lima (irradiance levels and diffuse component, operating temperature, humidity, spectral distribution, and dust).
Downloads
References
[2] A. K. Tossa, Y. M. M. Soro, Y. Azoumah and D. Yamegueu, “A new approach to estimate the performance and energy productivity of photovoltaic modules in real operating conditions,” Sol. Energy, vol. 110, pp. 543–560, Dec. 2014.
[3] T. Ma, H. Yang and L. Lu, “Development of a model to simulate the performance characteristics of crystalline silicon photovoltaic modules/strings/arrays,” Sol. Energy, vol. 100, pp. 31–41, Feb. 2014.
[4] J. Muñoz and E. Lorenzo, “Capacitive load based on IGBTs for on-site characterization of PV arrays,” Sol. Energy, vol. 80, no. 11, pp. 1489–1497, 2006.
[5] J. Montes Romero, M. Piliougine, J. V. Muñoz, E. F. Fernández and J. De La Casa, “Photovoltaic device performance evaluation using an open-hardware system and standard calibrated laboratory instruments,” Energies, vol. 10, no. 11, 2017.
[6] Banco Mundial. “Perú Panorama general.” [Online]. Available: https://www.bancomundial.org/es/country/peru/overview (accessed Jan. 25, 2020)
[7] M. A. Zambrano-Monserrate, C. A. Silva-Zambrano, J. L. Davalos Penafiel, A. Zambrano Monserrate and M. A. Ruano, “Testing environmental Kuznets curve hypothesis in Peru: The role of renewable electricity, petroleum and dry natural gas,” Renew. Sustain. Energy Rev., vol. 82, pp. 4170–4178, Feb. 2018.
[8] Banco Mundial. Perú | Data. [Online]. Available: https://datos.bancomundial.org/pais/peru?view=chart (accessed Sep. 28, 2019).
[9] Sun World 2019. MEM y la Alianza Solar Internacional suscribieron convenio de cooperación para el impulso de Energías Renovables en Perú | Sun World 2019. [Online]. Available: https://sun-world.org/2018/12/mem-y-la-alianza-solar-internacional-suscribieron-convenio-de-cooperacion-para-el-impulso-de-energias-renovables-en-peru/ (accessed Sep. 18, 2019).
[10] El Comercio. Enel inaugura la planta solar más grande del Perú | Economía | Perú | El Comercio Perú. [Online]. Available: https://elcomercio.pe/economia/peru/enel-inaugura-rubi-planta-solar-grande-peru-noticia-505857 (accessed Sep. 19, 2019].
[11] MINAGRI. El clima. [Online]. Available: https://www.minagri.gob.pe/portal/53-sector-agrario/el-clima (accessed Sep. 19, 2019)
[12] M. Kottek, J. Grieser, C. Beck, B. Rudolf and F. Rubel, “World Map of the Köppen-Geiger climate classification updated,” Meteorol. Zeitschrift, vol. 15, no. 3, pp. 259–263, Jul. 2006.
[13] INEI. Población del Perú totalizó 31 millones 237 mil 385 personas al 2017. [Online]. Available: https://www.inei.gob.pe/prensa/noticias/poblacion-del-peru-totalizo-31-millones-237-mil-385-personas-al-2017-10817/ (accessed Sep. 22, 2019)
[14] I. Romero Fiances, E. Muñoz Cerón, R. Espinoza Paredes, G. Nofuentes and J. De La Casa, “Analysis of the performance of various pv module technologies in Peru,” Energies, vol. 12, no. 1, 2019.
[15] R. Espinoza, C. Luque, E. Muñoz Cerón and J. De la Casa, “Barreras a superar en el intento de una intervención masiva de sistemas FV conectados a la red en el Perú,” Rev. Cient. Tec., vol. 27, no. 1, p. 7, Jan. 2018.
[16] P. Ferrada, F. Araya, A. Marzo and E. Fuentealba, “Performance analysis of photovoltaic systems of two different technologies in a coastal desert climate zone of Chile,” Sol. Energy, vol. 114, pp. 356–363, Apr. 2015.
[17] J. Montes Romero, M. Torres Ramírez, J. De La Casa, A. Firman and M. Cáceres, “Software tool for the extrapolation to Standard Test Conditions (STC) from experimental curves of photovoltaic modules,” Proc. 2016 Technol. Appl. to Electron. Teaching, TAEE 2016, 2016.
[18] F. Martínez Moreno, E. Lorenzo, J. Muñoz and R. Moretón, “On the testing of large PV arrays,” Prog. Photovoltaics Res. Appl., vol. 20, no. 1, pp. 100–105, 2012.
[19] G. Nofuentes, J. de la Casa, E. M. Solís-Alemán and E. F. Fernández, “Spectral impact on PV performance in mid-latitude sunny inland sites: Experimental vs. modelled results,” Energy, vol. 141, pp. 1857–1868, 2017.
[20] C. Cornaro and A. Andreotti, “Influence of Average Photon Energy index on solar irradiance characteristics and outdoor performance of photovoltaic modules,” Prog. Photovoltaics Res. Appl., vol. 21, no. 5, p. n/a-n/a, Apr. 2012.
[21] J. Y. Ye, T. Reindl, A. G. Aberle and T. M. Walsh, “Effect of solar spectrum on the performance of various thin-film PV module technologies in tropical Singapore,” IEEE J. Photovoltaics, vol. 4, no. 5, pp. 1268–1274, 2014.