Evaluation of thermal behavior of a wall construction system in the high andean zone using an experimental module
DOI:
https://doi.org/10.21754/tecnia.v34i2.2170Keywords:
Thermal behavior, Experimental module, Thermal simulation, EnergyPlus, Solar EnergyAbstract
This article aims to evaluate the thermal behavior of a construction system consisting of fired red clay brick walls with cavities, commonly used in large cities in Peru and increasingly adopted in high-altitude Andean areas without being evaluated for frost climates. Consequently, an experimental module was constructed at a real scale at 4500 masl. The experimentation carried out over 49 days shows that the thermal delay and decrement factor are 4 hours and 0.27, respectively, with the daily hourly average thermal amplitude indoors being 6.4°C and outdoors being 17.1°C. Additionally, the numerical study using EnergyPlus software and the implementation of the equivalent model of a set of homogeneous layers for heterogeneous materials, which dynamically considers the heat transfer modes by conduction, convection, and radiation, achieve good agreements of the indoor temperature between the measured and simulated values with R2 indices of 0.87 and RMSE of 0.91, validating the experimental module model.
Downloads
References
N. Jannat, A. Hussien, B. Abdullah, y A. Cotgrave, «A Comparative Simulation Study of the Thermal Performances of the Building Envelope Wall Materials in the Tropics», Sustainability, vol. 12, no. 2, ene. 2020, doi: 10.3390/su12124892.
Y. H. Lee et al., «Thermal Behavior and Energy Efficiency of Modified Concretes in the Tropical Climate: A Systemic Review», Sustainability, vol. 13, no. 21, ene. 2021, doi: 10.3390/su132111957.
A. Carrobé, L. Rincón, y I. Martorell, «Thermal Monitoring and Simulation of Earthen Buildings. A Review», Energies, vol. 14, no. 8, ene. 2021, doi: 10.3390/en14082080.
J. O. Molina, M. J. Horn, y M. M. Gómez, «Design of a “Test Cell” to be located at 4500 masl in a high Andean region of Peru and dynamic simulation of the thermal performance of housing wall materials», J. Phys.: Conf. Ser., vol. 1433, no. 1, ene. 2020, doi: 10.1088/1742-6596/1433/1/012002.
J. R. Molina, G. Lefebvre, R. Espinoza, M. Horn, y M. M. Gómez, «Bioclimatic approach for rural dwellings in the cold, high Andean region: A case study of a Peruvian house», Energy and Buildings, vol. 231, ene. 2021, doi: 10.1016/j.enbuild.2020.110605.
G. Barrios, G. Huelsz, J. Rojas, J. M. Ochoa, y I. Marincic, «Envelope wall/roof thermal performance parameters for non air-conditioned buildings», Energy and Buildings, vol. 50, pp. 120-127, jul. 2012, doi: 10.1016/j.enbuild.2012.03.030.
G. Huelsz, G. Barrios, y J. Rojas, «Evaluation of heat transfer models for hollow blocks in whole-building energy simulations», Energy and Buildings, vol. 202, nov. 2019, doi: 10.1016/j.enbuild.2019.109338.
H. E. Huerto et al., «Validation of dynamic hygrothermal simulation models for historical buildings: State of the art, research challenges and recommendations», Building and Environment, vol. 180, ago. 2020, doi: 10.1016/j.buildenv.2020.107081.
SENAMHI, «Estaciones». [En línea]. Disponible en: https://www.senamhi.gob.pe/?&p=estaciones
J. A. Clarke, Thermophysical properties, Second Edition. Butterworth-Heinemann, 2001, pp. 325-339. doi: 10.1016/B978-075065082-3/50010-3.
Y. Cengel, Transferencia de calor y masa: Un enfoque práctico, Tercera Edición. México, D.F.: McGraw-Hill Interamericana, 2007.
MVCS, «Norma EM.110 Confort Térmico y Lumínico con Eficiencia Energética», Reglamento Nacional de Edificaciones. [En línea]. http://www.construccion.org.pe/normas/rne2012/rne2006.htm
E. Harb et al., «Thermal performance of starch/beet-pulp composite bricks for building insulation at a wall scale», Case Studies in Construction Materials, vol. 18, p. e01851, jul. 2023, doi: 10.1016/j.cscm.2023.e01851.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 TECNIA
This work is licensed under a Creative Commons Attribution 4.0 International License.