Thermal conductivity of sandwich compounds used in the construction industry

Authors

DOI:

https://doi.org/10.21754/tecnia.v21i1.1198

Keywords:

Sandwich compound, Thermal conductivity, Thermal comfort, Frost, sustainable homes

Abstract

In recent decades sandwich composites have taken a greater share in the construction industry, due to their low cost and properties that characterize these composites. Among the most important properties of these, the thermal conductivity stands out, which is directly linked to the individual's thermal comfort in a building. Currently, the Peruvian State has been developing projects in the fight against frost and cold, where one of the main interventions focuses on the construction of sustainable homes that can help the high Andean population cope with the inclement cold. In this sense, it is necessary to have construction materials appropriate for the climatic conditions of the place, and that is where lies the importance of this research. This paper proposes the study of thermal conductivity at temperature conditions close to 0 ºC of sandwich composites formed from monolithic materials most used in construction such as drywall, brick, expanded polystyrene, glass wool and polyester wool. The study was carried out through the use of a guarded hot plate equipment of double sample, built with the guidelines established by the ASTM C177 standard. The measurements made of the composites drywall-expanded polystyrene-drywall, drywall-glass wool-drywall, drywall-polyester wool-drywall, brick-expanded polystyrene-brick, brick-glass wool-brick, brick-polyester wool-brick, gave the following results 0.0953 Wm-1.ºC-1, 0.0675 Wm-1.ºC-1, 0.0833 Wm-1.ºC-1, 0.0891 Wm-1.ºC-1, 0.0602 Wm-1.ºC-1, 0.0709 Wm-1.ºC-1 respectively.

Downloads

Download data is not yet available.

References

[1] C. Fernandez, “Puno: neumonías por bajas temperaturas causan la muerte de 17 niños y ancianos,” El Comercio, 2020. https://bit.ly/347mtmC (accessed Jul. 08, 2020).
[2] ASTM (2004). “ASTM C177: Standard Test Method for Steady-State Heat Flux Measurements and Thermal Transmission Properties by Means of the Guarded Hot-Plate Apparatus.” Whashingtion D.C., [Online]. Available: https://www.astm.org/DATABASE.CART/HISTORICAL/C177-04.htm.
[3] ASTM, “Standard Practice for Calculating Thermal Transmission Properties Under Steady-,” Annu. B. ASTM Stand., vol. 14, no. June, pp. 1–13, 2012, doi: 10.1520/C1045-07R13.Copyright.
[4] K. Janampa Quispe, “Conductividad Térmica de Materiales Utilizados en Edificaciones de la Región de Ayacucho,” 2014. https://dina.concytec.gob.pe/appDirectorioCTI/VerDatosInvestigador.do?id_investigador=17520 (accessed May 24, 2020).
[5] K. Janampa, O. Cerón, O. Morales, y J. Oré, “Thermal characterization of materials used in rural housing constructions in Ayacucho, Peru,” J. Phys. Conf. Ser., vol. 1433, no. 1, 2020, doi: 10.1088/1742-6596/1433/1/012004.
[6] J. Noel et al., “Assessment of Ichu Fibers as Non Expensive Thermal Insulation System for the Andean Regions,” 2015, [Online]. Available: https://repositorio.utec.edu.pe/handle/UTEC/28?mode=full.
[7] J. M. Pinas, L. Lira, M. Horn, J. L. Solis, y M. M. Gómez, “Influence of Stipa ichu on the thermal and mechanical properties of adobe as a biocomposite material,” J. Phys. Conf. Ser., vol. 1433, no. 1, 2020, doi: 10.1088/1742-6596/1433/1/012003.
[8] W. Callister y D. Rethwisch, Composites, 9th ed. United States of America, 2013.
[9] HexCel Composites, “Honeycomb sandwich design technology,” HexWeb Honeycomb Sandw. Des. Technol., no. AGU 075b, pp. 1–28, 2000, [Online]. Available: https://www.hexcel.com/user_area/content_media/raw/Honeycomb_Sandwich_Design_Technology.pdf.
[10] J. M. Malavia Otero, “Caracterización de paneles sandwich hibridos frp con alma de nido de abeja de aluminio”, Tesis de pregrado, Universidad Politécnica de Valencia, 2012.
[11] R. W. Serth and L. Thomas, “Heat Conduction,” in Process Heat Transfer, 2nd ed., Texas: Academic Press, 2014, pp. 1–30.
[12] Y. A. Cengel and A. J. Ghajar, Transferencia de Calor y Masa, 4th ed. Mexico DF, 2011.
[13] A. J. Chapman, Transmision del Calor, 3rd ed. Madrid: McMILLAN PUBLISHING COMPANY, 1990.
[14] A. L. P. Robert R. Zarr, “SRM 1453, Expanded Polystyrene Board, for Thermal Conductivity from 281 K to 313 K,” 2012. [En linea]. Disponible en: http://dx.doi.org/10.6028/NIST.SP. 260-175.
[15] AAISLACORP 2000, “PANEL DE LANA DE VIDRIO.” 2018, [En linea]. Disponible en: https://www.aaislacorp.com/producto/panel-de-lana-de-vidrio/.
[16] Texeco (2006). “Aislante Térmico y Absorbente Acústico (Ecoterm).” p. 1, [En linea]. Disponible en : http://www.texecoperu.com.pe/assets/docs/FICHA_ECOTERM.pdf.
[17] VOLCAN, “Planchas de Yeso Cartón - Volcanita ST.” pp. 1–8, [Online]. Available: http://www.especificar.cl/fichas/planchas-de-yeso-carton-volcanita-st.
[18] H. D. Young y R. A. Freedman, Temperatura y Calor, 12th ed. México.: Pearson, 2009.
[19] F. S. Espinoza Castillo, “Caracterización Térmica, Estructural y Mecánica de la Ignimbrita Aeropuerto de Arequipa”, Tesis de pregrado, Universidad Nacional de Ingenieria, Lima, 2020.

Published

2021-06-18

How to Cite

[1]
M. A. Mendoza, M. J. Piñas Moya, M. J. Horn Mutschler, and M. M. M. Gómez León, “Thermal conductivity of sandwich compounds used in the construction industry”, TEC, vol. 31, no. 1, pp. 42–50, Jun. 2021.

Issue

Section

Solar and photovoltaic energy

Most read articles by the same author(s)