Reconfiguration of electrical distribution networks using the simulated annealing algorithm

Authors

DOI:

https://doi.org/10.21754/tecnia.v34i1.1724

Keywords:

Distribution networks; Reconfiguration; Simulated Annealed; Optimization; Selective Space Mesh

Abstract

This article presents a new algorithm to solve the distribution network reconfiguration problem using Simulated Annealing Optimization. The proposed method provides an improvement relative to the classic approach and the convergence rate between its simulations, using the Open Distribution System Simulator (OpenDSS) software. In addition, using the particular space mesh search concept, which considerably reduces the solution search space. The proposed algorithm aims to reduce energy losses in distribution networks; its operation was applied to the simple 5-bus system. Finally, the proposed algorithm was used for the 33-bus distribution test system, commonly found in the literature. The simulation results show that the proposed method is very efficient and guarantees the achievement of the global optimum.

Downloads

Download data is not yet available.

References

B. Avelar Rodrigues de Andrade y N. Roberto Ferreira. “Simulated annealing and tabu search applied on network reconfiguration in distribution systems”. En: 2018 Simposio Brasileiro de Sistemas Eletricos (SBSE), 2018, pp. 1–6, doi: 10.1109/SBSE.2018.8395757.

M. Antončič, M. Mikec y B. Blažič. “Development of distribution network model in OpenDSS using Matlab and GIS data”. En: 2019 7th International Youth Conference on Energy (IYCE), 2019, pp. 1–6, doi: 10.1109/IYCE45807.2019.8991604.

A. Augugliaro, L. Dusonchet y E. Riva Sanseverino. “Genetic, simulated annealing and tabu search algorithms: Three heuristic methods for optimal reconfiguration and compensation of distribution networks”, European Transactions on Electrical Power, vol. 9, 1999, pp. 35–41, doi: 10.1002/etep.4450090104.

M.E. Baran y F.F. Wu. “Network reconfiguration in distribution systems for loss reduction and load balancing”, IEEE Transactions on Power Delivery, vol 4, no. 2, 1989, pp. 1401–1407. doi: 10.1109/61.25627.

D. Pinheiro Bernardon. “Novos Métodos para Reconfiguração das Redes de Distribuição a partir de Algoritmos de Tomadas de Decisão Multicritérios”. Tesis de Doctorado, Universidad Federal de Santa Maria, Río Grande del Sur, Brasil, 2007. [En línea]. Disponible: http://repositorio.ufsm.br/handle/1/3651

R.E. Brown. “Distribution reliability assessment and reconfiguration optimization”. En: 2001 IEEE/PES Transmission and Distribution Conference and Exposition. Developing New Perspectives (Cat.No.01CH37294), Vol. 2. 2001, 994–999 vol.2. doi: 10.1109/TDC.2001.971382.

J. Brownlee. Clever algorithms: nature-inspired programming recipes. Jason Brownlee, 2011.

J. Chen, F. Zhang y Y. Zhang. “Distribution Network Reconfiguration Based on Simulated Annealing Immune Algorithm”, Energy Procedia, vol. 12, 2011, pp. 271–277. doi: 10.1016/j.egypro.2011.10.037.

E. Chen, S. Zhang y T. Wang. “Research on distribution network reconstruction based on improved simulated annealing — Ant colony algorithm”. En: 2017 Chinese Automation Congress (CAC), 2017, pp. 3575–3579. doi: 10.1109/CAC.2017.8243401.

H. D. Chiang y R. Jean-Jumeau. “Optimal network reconfigurations in distribution systems. I. A new formulation and a solution methodology”, IEEE Transactions on Power Delivery, vol. 5, no. 4, pp. 1902–1909, 1990. doi: 10.1109/61.103687.

R. Chibante. Simulated annealing: theory with applications. BoD–Books on Demand, 2010.

S. Civanlar et al. “Distribution feeder reconfiguration for loss reduction”, IEEE Transactions on Power Delivery, vol. 3, no. 3, pp. 1217–1223, 1988. doi: 10.1109/61.193906.

R. C. Dugan y D. Montenegro. “Reference Guide: The Open Distribution System Simulator (OpenDSS)”. Electric Power Research Institute, Inc, vol. 9.0, 2020, pp. 1–218. [En línea]. Disponible: https://sourceforge.net/p/electricdss/code/HEAD/tree/trunk/Distrib/Doc/OpenDSS Manual.pdf

E. Goldbarg, M. Goldbarg y H. Luna. Otimização combinatória e metaheurıésticas: algoritmos e apliacações. Elsevier Brasil, 2017.

Y. J. Jeon y J. C. Kim. “Network reconfiguration in radial distribution system using simulated annealing and Tabu search”, 2000 IEEE Power Engineering Society Winter Meeting. Conference Proceedings, Vol. 4, pp. 2329–2333, 2000. doi: 10.1109/PESW. 2000.847169.

S. Koziel, A. Landeros y S. Moskwa. “Power loss reduction through distribution network reconfiguration using feasibility-preserving simulated annealing”, 2018 19th International Scientific Conference on Electric Power Engineering (EPE), pp. 1–5, 2018. doi: 10.1109/EPE.2018.8396016.

M. Lavorato et al. “Imposing radiality constraints in distribution system optimization problems”, IEEE Transactions on Power Systems, vol. 27, no. 1, pp. 172–180, 2011. doi: 10.1109/TPWRS.2011.2161349

R. C. Marques, H. S. Eichkoff y A. P. C. de Mello. “Analysis of the distribution network reconfiguration using the OpenDSS®software”. En: 2018 Simposio Brasileiro de Sistemas Eletricos (SBSE), 2018, pp. 1–6. doi: 10.1109/SBSE.2018.8395703.

A. P. Carboni de Mello. “Reconfiguração de redes de distribuição considerando multivariáveis e geração distribuída”. 2014 Universidade Federal de Santa Maria. Tesis de Maestría, Universidad Federal de Santa Maria, Río Grande del Sur, Brasil, 2014. [En línea]. Disponible: http://repositorio.ufsm.br/handle/1/8537

A. Merlin y H. Back. “Search for a Minimal-Loss Operating Spanning Tree Configuration in an Urban Power Distribution System”. En: Fifth Power Systems Computer Conference (PSCC), 1975.

D. Montenegro. “Introduction to the Next Generation of Distribution Analysis Tools – Summer course D1”. En: Electric Power Research Institute, 2019, pp. 1–105. [En línea]. Disponible: https://sourceforge.net/p/electricdss/code/2705/tree/trunk/Training/Uniandes-2019/NGDAT_Day_1.pdf

S. Nie et al. “Analysis of the impact of DG on distribution network reconfiguration using OpenDSS”. En: IEEE PES Innovative Smart Grid Technologies, 2012, pp. 1–5. doi: 10.1109/ISGT-Asia.2012.6303390.

T. Niknam, E. Azadfarsani y M. Jabbari. “A new hybrid evolutionary algorithm based on new fuzzy adaptive PSO and NM algorithms for distribution feeder reconfiguration”. En: Energy Conversion and Management, vol. 54, no. 1, pp. 7–16, 2012. doi: 10.1016/j.enconman.2011.09.014

R. Pegado et al. “Radial distribution network reconfiguration for power losses reduction based on improved selective BPSO”. En: Electric Power Systems Research, vol. 169, pp. 206–213, 2019. doi: 10.1016/j.epsr.2018.12.030.

R. de Araújo Pegado. Reconfiguração de redes de distribuição de energia elétrica usando otimização por enxame de partículas aprimorado. Tesis de Maestría. Universidade Federal da Paraíba, Paraíba, Brasil, 2019. [En línea]. Disponible: https://repositorio.ufpb.br/jspui/handle/123456789/17174

G.J. Peponis, M.P. Papadopoulos y N.D. Hatziargyriou. “Distribution network reconfiguration to minimize resistive line losses”, IEEE Transactions on Power Delivery, vol. 10, no. 3, pp. 1338–1342, 1995. doi: 10.1109/61.400914.

F. S. Pereira, K. Vittori y G. R. M. da Costa. “Ant colony based method for reconfiguration of power distribution system to reduce losses”. En: 2008 IEEE/PES Transmission and Distribution Conference and Exposition: Latin America, 2008, pp. 1–5. doi: 10.1109/TDC-LA.2008.4641831.

J. Sexauver. “New User Primer: The Open Distribution System Simulator (OpenDSS)”, Electric Power Research Institute, Inc, vol. 7, no. 6, 2012, pp. 1–35.

D. Shirmohammadi y H.W. Hong. “Reconfiguration of electric distribution networks for resistive line losses reduction”, IEEE Transactions on Power Delivery, vol 4, no.2, pp. 1492–1498, 1989. doi: 10.1109/61.25637.

A. Skoonpong y S. Sirisumrannukul. “Network Reconfiguration for Reliability Worth Enhancement in Distribution Systems by multi-objective evolutionary algorithm based on decomposition integrating with thought of simulated annealing”, 2008 5th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology, 2008. doi: 10.1109/ECTICON.2008.4600585

El-Ghazali Talbi. Metaheuristics: from design to implementation. John Wiley & Sons, 2009.

M. Zulqarnain Zeb et al. “Optimal Placement of Electric Vehicle Charging Stations in the Active Distribution Network”, IEEE Access, vol. 8, pp. 68124–68134, 2020. doi: 10.1109/ACCESS.2020.2984127.

J. Zhang, Z. Li y B. Wang. “Within-day rolling optimal scheduling problem for active distribution networks by Simulated Annealing”, Energy, Vol. 223, pp. 937–940, 2021. doi: 10.1016/j.energy.2021.120027.

M. Zhigang. “Study on distribution network reconfiguration based on genetic simulated annealing algorithm”. En: 2008 China International Conference on Electricity Distribution, 2008, pp. 1–7. doi: 10.1109/CICED.2008.5211684.

Published

2024-09-18

How to Cite

[1]
Z. Ñaupari Huatuco, “Reconfiguration of electrical distribution networks using the simulated annealing algorithm”, TECNIA, vol. 34, no. 1, pp. 51–61, Sep. 2024.

Issue

Section

Renewable energy, electrical engineering and / or power systems

Most read articles by the same author(s)