Extraction and characterization of cellulose from corn husk waste
DOI:
https://doi.org/10.21754/tecnia.v33i2.1676Keywords:
Cellullose, Corn waste, bleachingAbstract
Corn is the most cultivated cereal in the world, however, only 20% of the total mass corresponds to the edible part, leaving the rest as wastes, whose recovery is still a challenge. In particular, in Peru, maize crop residues usually get disposed by open-air incineration, impacting the nearby grounds and releasing greenhouse gases. Addressing this problem, this research focus on the extraction of cellulose from corn husk waste through the combination of both mechanical (drying, milling and sieving) and chemical treatments (alkaline treatment and bleaching). The cellulose was extracted with a 79.4% yield while its purity was estimated on 70.3%. On the other hand, the crystallinity and morphology of the sample were characterized by X-ray diffraction and scanning electron microscopy, respectively. The diffractogram allowed the identification of intense peaks in a characteristic pattern of cellulose with a crystallinity index of 45, while SEM images showed a change on the structure of the material from irregular and rough to a fibrillated network arrangement. Likewise, the spectral bands of cellulose were characterized by FT IR spectroscopy. This research verified the feasibility of cellulose extraction and provides a new approach for the valorization of the corn residues in Peru.
Downloads
References
Organización de las Naciones Unidas para la Agricultura y la Alimentación, “Production, trade and prices of commodities”, in World Food and Agriculture – Statistical Yearbook 2021. Rome, Italy, 2021, pp. 11-26. Accedido: Mar. 05, 2023. [En línea]. Disponible: https://www.fao.org/3/cb4477en/online/cb4477en.html#chapter-2
M. Vallejo et al., “Recovery and evaluation of cellulose from agroindustrial residues of corn, grape, pomegranate, strawberry-tree fruit and fava,” Bioresources and Bioprocessing, vol. 8, no. 25, Abr. 2021, doi: 10.1186/s40643-021-00377-3
Food and Agriculture Organization of the United Nations (FAO). “Series de datos y archivos suspendidos / Precios al Productor (archivo) – Metadatos” distributed by Statistics Division (ESS), https://www.fao.org/faostat/es/#search/maiz
Ministerio de Desarrollo Agrario y Riego MIDAGRI, “Maíz Choclo, Semana Nacional de las frutas y verduras 2021”, Perú. [En línea]. Disponible: https://cdn.www.gob.pe/uploads/document/file/1828781/Brochure_Mai%CC%81z%20Choclo.pdf.pdf
D. Klemm, et al., “Cellulose: Fascinating biopolymer and sustainable raw material”, Angewandte Chemie International Edition, vol. 44, no. 22. pp. 3358–3393, May 24, 2005, doi: 10.1002/anie.200460587.
L. K. Kian, et al., “Characterization of microcrystalline cellulose extracted from olive fiber,” Int J Biol Macromol, vol. 156, pp. 347–353, Aug. 2020, doi: 10.1016/J.IJBIOMAC.2020.04.015
Mussato S., Biomass Fractionation Technologies for a Lignocellulosic Feedstock Based Biorefinery. Elsevier, 2016.
K. Dhali, et al., “A review of nanocellulose as a new material towards environmental sustainability,” Science of the Total Environment, vol. 775, Jun. 25, 2021. doi: 10.1016/j.scitotenv.2021.145871.
M. Jakob et al., “The strength and stiffness of oriented wood and cellulose-fibre materials: A review,” Prog Mater Sci, vol. 125, Abr. 2022, doi: 10.1016/J.PMATSCI.2021.100916
M. I. H. Mondal, et al., “Preparation of food grade carboxymethyl cellulose from corn husk agrowaste,” Int J Biol Macromol, vol. 79, pp. 144–150, Ag. 2015, doi: 10.1016/j.ijbiomac.2015.04.061
P. Udomkun, et al., “Cellulose acetate and adsorbents supported on cellulose fiber extracted from waxy corn husks for improving shelf life of frying oil,” LWT, vol. 97, pp. 45–52, Nov. 2018, doi: 10.1016/j.lwt.2018.06.035
B. Tajeddin, “Cellulose-Based Polymers for Packaging Applications,” in Lignocellulosic Polymer Composites: Processing, Characterization, and Properties, Wiley Blackwell, 2014, pp. 477–498. [En línea]. Disponible: https://doi.org/10.1002/9781118773949.ch21
C. Costa, et al., “Cellulose as a Natural Emulsifier: From Nanocelluloses to Macromolecules,” in Cellulose Science and Derivatives. London, IntechOpen, 2021. doi: 10.5772/intechopen.99139
A. Sharma, et al., “Commercial application of cellulose nano-composites – A review,” Biotechnology Reports, vol. 21, Mar. 01, 2019. doi: 10.1016/j.btre.2019.e00316
R. A. Ilyas, et al., “Isolation and characterization of nanocrystalline cellulose from sugar palm fibres (Arenga Pinnata),” Carbohydr Polym, vol. 181, no. Nov, pp. 1038–1051, 2018, doi: 10.1016/j.carbpol.2017.11.045
H. Kalász, et al., “Basis and pharmaceutical applications of thin-layer chromatography,” Handbook of Analytical Separations, vol. 8, pp. 523–585, Ene. 2020, doi: 10.1016/B978-0-444-64070-3.00010-2
E. Syafri, et al., “Isolation and characterization of cellulose nanofibers from Agave gigantea by chemical-mechanical treatment,” Int J Biol Macromol, vol. 200, no., pp. 25–33, Dic 2022, doi: 10.1016/j.ijbiomac.2021.12.111
P. Kampeerapappun, “Extraction and Characterization of Cellulose Nanocrystals Produced by Acid Hydrolysis from Corn Husk,” Journal of Metals, Materials and Minerals, vol. 25, no. 1, pp. 19–26, 2015, doi: 10.14456/jmmm.2015.3
A. Duque, et al., “Extrusion as a pretreatment for lignocellulosic biomass: Fundamentals and applications,” Renewable Energy, vol. 114, pp. 1427–1441, 2017. doi: 10.1016/j.renene.2017.06.050.
V. Dhyani and T. Bhaskar, “A comprehensive review on the pyrolysis of lignocellulosic biomass,” Renew Energy, vol. 129, pp. 695–716, Dic. 2018, doi: 10.1016/j.renene.2017.04.035
V. Oriez, et al., “Lignocellulosic Biomass Mild Alkaline Fractionation and Resulting Extract Purification Processes: Conditions, Yields, and Purities,” Clean Technologies, vol. 2, no. 1. MDPI, pp. 91–115, Mar. 01, 2020, doi: 10.3390/cleantechnol2010007
L. A. De, et al., “Extraction and characterization of cellulose nanocrystals from corn stover,” Materials Today: Proceedings, vol. 2, no. 1, pp. 287-294, 2015, doi: 10.1016/j.matpr.2015.04.045
H. K. Singh, et al., “Isolation of microcrystalline cellulose from corn stover with emphasis on its constituents: Corn cover and corn cob,” in Materials Today: Proceedings, vol. 27, 2020, pp. 589–594, doi: 10.1016/j.matpr.2019.12.065
K. Harini and C. Chandra Mohan, “Isolation and characterization of micro and nanocrystalline cellulose fibers from the walnut shell, corncob and sugarcane bagasse,” Int J Biol Macromol, vol. 163, pp. 1375–1383, Nov. 2020, doi: 10.1016/J.IJBIOMAC.2020.07.239
N. Johar, et al., “Extraction, preparation and characterization of cellulose fibres and nanocrystals from rice husk,” Ind Crops Prod, vol. 37, no. 1, pp. 93–99, May 2012, doi: 10.1016/j.indcrop.2011.12.016.
A. Ait Benhamou et al., “Beneficiation of cactus fruit waste seeds for the production of cellulose nanostructures: Extraction and properties,” Int J Biol Macromol, vol. 203, no. Nov. 2021, pp. 302–311, 2022, doi: 10.1016/j.ijbiomac.2022.01.163
C. Uma Maheswari, et al., “Extraction and characterization of cellulose microfibrils from agricultural residue – Cocos nucifera L.,” Biomass Bioenergy, vol. 46, pp. 555–563, Nov. 2012, doi: 10.1016/J.BIOMBIOE.2012.06.039
F. Kallel, et al., “Isolation and structural characterization of cellulose nanocrystals extracted from garlic straw residues,” Ind Crops Prod, vol. 87, pp. 287–296, Sep. 2016, doi: 10.1016/j.indcrop.2016.04.060
C. A. D. C. Mendes, et al., “Isolation and characterization of nanocrystalline cellulose from corn husk,” Mater Lett, vol. 148, pp. 26–29, Jun. 2015, doi: 10.1016/J.MATLET.2015.02.047
M. Smyth, et al., “Extraction and process analysis of high aspect ratio cellulose nanocrystals from corn (Zea mays) agricultural residue,” Ind Crops Prod, vol. 108, pp. 257–266, Dec. 2017, doi: 10.1016/j.indcrop.2017.06.006
H. A. Silvério, et al., “Extraction and characterization of cellulose nanocrystals from corncob for application as reinforcing agent in nanocomposites,” Ind Crops Prod, vol. 44, pp. 427–436, 2013, doi: https://doi.org/10.1016/j.indcrop.2012.10.014.
R. N. Hernández-Hernández, et al., “Obtención de celulosa cristalina de hoja de maíz de Metztitlán Hidalgo,” Pädi Boletín Científico de Ciencias Básicas e Ingenierías del ICBI, vol. 9, no. 2, pp. 7–12, Dec. 2021, doi: 10.29057/icbi.v9iespecial2.7993
Standard Specific Interest Group for this Test Method TAPPI, “Tappi T22 method”, American National Standards Institute, Washington D. C., USA, 2021.
Standard Specific Interest Group for this Test Method TAPPI, “Solvent extractives of wood and pulp,” American National Standards Institute, Washington D. C., USA, 2007.
L. E. Wise, “Chlorite holocellulose, its fractionation and bearing on summative wood analysis and studies on the hemicelluloses,” Paper Trade Journal, vol. 2, no. 122, pp. 35–43, 1946.
M. Rizwan, et al., “Cellulose extraction of Alstonia scholaris: A comparative study on efficiency of different bleaching reagents for its isolation and characterization,” Int J Biol Macromol, vol. 191, pp. 964–972, Nov. 2021, doi: 10.1016/j.ijbiomac.2021.09.155.
L. Segal, et al., “An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer”, Textile Research Journal, vol. 29, no. 10, Oct. 1959, doi: 10.1177/00405175590290100
E. Chaparro, et al., “Extracción de celulosa a partir de cáscara de tuna y corona de piña,” Revista Ciencia y Tecnología, vol. 6, no. 11, pp. 25-31, https://revistas.ujcm.edu.pe/index.php/rctd/article/view/163
E. Quispe and P. F. Velásquez, “Obtención de celulosa a partir residuos de tallos de Chenopodium Quinoa,” vol. 4, 2022, doi: 10.47796/ing.v4i0.707
N. Sai Prasanna and J. Mitra, “Isolation and characterization of cellulose nanocrystals from Cucumis sativus peels,” Carbohydr Polym, vol. 247, Nov. 2020, doi: 10.1016/j.carbpol.2020.116706.
D. U. Pascoli, et al., “Lignocellulosic nanomaterials production from wheat straw via peracetic acid pretreatment and their application in plastic composites,” Carbohydr Polym, vol. 295, Nov. 2022, doi: 10.1016/j.carbpol.2022.119857
J. X. Sun, et al., “Comparative study of hemicelluloses isolated with alkaline peroxide from lignocellulosic materials,” Journal of Wood Chemistry and Technology, vol. 24, no. 3, pp. 239–262, Aug. 2004, doi: 10.1081/WCT-200038170
B. W. Chieng, et al., “Isolation and Characterization of Cellulose Nanocrystals from Oil Palm Mesocarp Fiber,” Polymers (Basel), vol. 9, no. 8, 2017, doi: 10.3390/polym9080355
A. Kumar, et al., “Characterization of Cellulose Nanocrystals Produced by Acid-Hydrolysis from Sugarcane Bagasse as Agro-Waste,” Journal of Materials Physics and Chemistry, vol. 2, no. 1, pp. 1–8, 2014, doi: 10.12691/jmpc-2-1-1
A. F. Tarchoun, D. Trache, and T. M. Klapötke, “Microcrystalline cellulose from Posidonia oceanica brown algae: Extraction and characterization,” Int J Biol Macromol, vol. 138, pp. 837–845, Oct. 2019, doi: 10.1016/j.ijbiomac.2019.07.176
N. Kasiri and M. Fathi, “Production of cellulose nanocrystals from pistachio shells and their application for stabilizing Pickering emulsions,” Int J Biol Macromol, vol. 106, pp. 1023–1031, Jan. 2018, doi: 10.1016/j.ijbiomac.2017.08.112
I. Y. A. Fatah et al., “Exploration of a chemo-mechanical technique for the isolation of nanofibrillated cellulosic fiber from oil palm empty fruit bunch as a reinforcing agent in composites materials,” Polymers (Basel), vol. 6, no. 10, pp. 2611–2624, 2014, doi: 10.3390/polym6102611
S. Nigam, A. K. Das, and M. K. Patidar, “Valorization of Parthenium hysterophorus weed for cellulose extraction and its application for bioplastic preparation,” J Environ Chem Eng, vol. 9, no. 4, Ag. 2021, doi: 10.1016/j.jece.2021.105424
H. Zhang, S. Fu, and Y. Chen, “Basic understanding of the color distinction of lignin and the proper selection of lignin in color-depended utilizations,” Int J Biol Macromol, vol. 147, pp. 607–615, Mar. 2020, doi: 10.1016/j.ijbiomac.2020.01.105
A. Khenblouche et al., “Extraction and characterization of cellulose microfibers from Retama raetam stems,” Polimeros, vol. 29, no. 1, pp. 1–8, 2019, doi: 10.1590/0104-1428.05218
A. I. Akinjokun, et al., “Isolation and characterization of nanocrystalline cellulose from cocoa pod husk (CPH) biomass wastes,” Heliyon, vol. 7, no. 4, Apr. 2021, doi: 10.1016/J.HELIYON.2021.E06680
M. le Normand, R. Moriana, and M. Ek, “Isolation and characterization of cellulose nanocrystals from spruce bark in a biorefinery perspective,” Carbohydr Polym, vol. 111, pp. 979–987, Oct. 2014, doi: 10.1016/j.carbpol.2014.04.092.
N. Y. Abu-Thabit, et al., “Isolation and characterization of microcrystalline cellulose from date seeds (Phoenix dactylifera L.),” Int J Biol Macromol, vol. 155, pp. 730–739, Jul. 2020, doi: 10.1016/J.IJBIOMAC.2020.03.255.
H. Dai, S. Ou, Y. Huang, and H. Huang, “Utilization of pineapple peel for production of nanocellulose and film application,” Cellulose, vol. 25, no. 3, pp. 1743–1756, Mar. 2018, doi: 10.1007/s10570-018-1671-0
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 TECNIA
This work is licensed under a Creative Commons Attribution 4.0 International License.