Proposal to obtain the maximum floor accelerations using the Peruvian seismic standard e.030

Authors

  • Roque Alberto Sánchez Meza Facultad de Ingeniería Civil, Universidad de Nacional de Ingeniera, Lima, Peru

DOI:

https://doi.org/10.21754/tecnia.v32i2.1401

Keywords:

Acceleration on floor, seismic design, dual system, first mode reduced, E.030

Abstract

In this work, a simplified envelope is proposed for the calculation of floor accelerations necessary for the design of diaphragms or slabs in reinforced concrete buildings. This envelope has been calibrated using the results of non-linear time-history analysis of analytical building models and measurements obtained from specimens tested on a shaking table at different universities. The proposed acceleration envelope is constructed only using their respective values ​​at the base, at the last level and the participation of the shear walls in the structural system, which makes its implementation simple for use in engineering practice.

Downloads

Download data is not yet available.

References

[1] M. Rodríguez and J. Restrepo, “Práctica y Diseño Sísmico de Edificios en México – Cambios Necesarios”, Revista de Ingeniería Sísmica, No. 86, pp. 89-118, 2012
[2] NTCS, “Normas técnicas complementarias para diseño por sismo”, Reglamento de Construcciones para los Municipios de Guerrero, México, 1989.
[3] American Society of Civil Engineers (ASCE), “Minimum Design Loads for Buildings and Other Structures. ASCE 7”. Reston, VA, USA, 2016.
[4] M. Jaimes and E. Reinoso, “Estimación de Demandas de Aceleración Máxima para el Análisis de Contenidos de Edificios”, XVI Congreso Nacional de Ingeniería Estructural, Veracruz, México, 2008.
[5] H. Akhlaghi and A. Moghadam, “Height-Wise Distribution of Peak Horizontal Floor Acceleration (PHFA)”, 14th World Conference on Earthquake Engineering, Beijing, China, 2008.
[6] M. Schoettler, “Seismic design in precast concrete diaphragms”, PhD thesis, UC San Diego, USA, 2010.
[7] NTCC, Normas técnicas complementarias para diseño y construcción de estructuras de concreto, Reglamento de Construcciones para el Distrito Federal, México, 2017.
[8] R. Sanchez, “Diseño sísmico de Edificios con Sistemas Duales Regulares”, PhD thesis, School of Engineering, National Autonomus University of México, México, 2008.
[9] A. Carr, “Ruaumoko, Computer Program Library”, University of Canterbury, Department of Civil Engineering, 1998
[10] M. Rodríguez and J. Botero, “Aspectos del comportamiento sísmico de estructuras de concreto reforzado considerando las propiedades mecánicas de aceros de refuerzo producidos en México”, Series del Instituto de Ingeniería, Nº 575, UNAM, México D.F., 1996
[11] T. Paulay, and M. N. J. Priestley, “Seismic design of reinforced concrete and masonry buildings”, John Wiley and Sons Inc., USA, 1992.
[12] M. Eberhard and M. Sozen, “Experiments and Analysis to Study the Seismic Response of Reinforced Concrete Frame-Wall Structures with Yielding Columns”, Structural Research Series No. 548, A Report to the National Science Foundation. University of Illinois at Urbana-Champaign, USA, 1989.
[13] D. Abrams and M. Sozen, “Experimental Study of Frame-Wall interaction in Reinforced Concrete Structures Subjected to Strong Earthquake Motions”, Structural Research Series No. 460, A Report to the National Science Foundation. University of Illinois at Urbana-Champaign, USA, 1979.
[14] Network for Earthquake Engineering Simulation (NEES) – University of California at San Diego (2006) “Seven Story Building Slice Prediction Contest”, Available: http://nees.ucsd.edu/7Story.html

Published

2022-08-08

How to Cite

[1]
R. A. Sánchez Meza, “Proposal to obtain the maximum floor accelerations using the Peruvian seismic standard e.030”, TEC, vol. 32, no. 2, pp. 47–58, Aug. 2022.

Issue

Section

Civil Engineering, Geotechnics and Earthquake Resistance