Proposal of a postal quality control system for the treatment planning system in teletherapy using OSL nanodot dosimeter

Authors

  • Ángel Rodríguez Horna Facultad de Ciencias, Universidad Nacional de Ingeniería, Lima, Perú
  • Carmen Sandra Guzman Calcina Facultad de Ciencias Naturales y Matemática, Universidad Nacional Federico Villarreal, Lima, Perú.
  • Modesto Montoya Zavaleta Facultad de Ciencias, Universidad Nacional de Ingeniería, Lima, Perú
  • José Fernando Márquez Pachas Facultad de Ciencias Físicas, Universidad Nacional Mayor de San Marcos, Lima, Perú.
  • Jesús Aymar Alejos Laboratorio de Dosimetría, Control Nuclear SAC, Lima, Perú
  • Juan Abraham Méndez Velásquez Facultad de Ciencias Naturales y Matemática, Universidad Nacional del Callao, Callao, Perú
  • Dante Roa University of California Irvine: Irvine, CA, US
  • Mirko Alva Sanchez Universidade Federal de Ciências da Saúde de Porto Alegre: Porto Alegre, RS, BR
  • José Santa Cruz Delgado Facultad de Ciencias Físicas, Universidad Nacional Mayor de San Marcos, Lima, Perú.
  • Jessenia Brillit Villaverde Herrera Instituto de Fisica de Sao Carlos, Univerdade de Sao Paulo - USP, Sao Paulo, SP, Brasil

DOI:

https://doi.org/10.21754/tecnia.v32i1.1107

Keywords:

Postal quality control systems, Computerized systems planning, OSLD NanoDot

Abstract

Objective: To implement a Postal Quality Control System to verify the Treatment Planning System in Teletherapy using Dosimeters Al2O3 :C, based on optically stimulated luminescence (OSL), commercially known as OSLD nanoDotTM.  Materials and Methods: A mannequin containing OSLD nanoDot TM dosimeters, (Al2O3 :C), previously characterized and calibrated for the energy of a 6.0 MV x-ray beam generated in a linear accelerator, the absorbed dose values were measured with: a Semiflex, ionization chamber, PTW – Freigburg electrometer,  3D radiation geometries, such as: Simple geometry (open field at 0º and 25º), Complex geometry (three open fields at 0º, 90º and 270º) and Combined geometry (field and various variations of Gantry rotation), using square fields (6cm2), circular (diameter 6cm), oblique (6cm x 6cm) and Irregular, equal weights and virtual wedge filters in different regions of the photon beam.  Results: The values of the characterization of the nanodot OSLD were: homogeneity (0.9999), by fading over time (0.9989), by correction of depletion (0.9985), of reproducibility (0.9953), by angular dependence (0.9925) and by linearity (1.0000) for a range of absorbed doses 100cGy to 200cGy.  The evaluations in the different regions of the beam, in homogeneous medium, were the following: Simple geometry (Uncertainty: 3.01%), Complex geometry (Uncertainty: 2.16%) and Combined geometry (Uncertainty: 2.62%) Conclusions: The results obtained are within the tolerance values, thus concluding that the OSLD nanoDot TM is a highly reliable dosimeter, in addition to its convenience in its integration into a postal dosimetric audit program.

Downloads

Download data is not yet available.

References

[1] D.J. Huntley, D.I. Godfrey-Smith y M.L.W. Thewalt, “Opical dating of sediments”. Nature, 313, 105–107 (1985).
[2] P.A. Jursinic, "Characterization of optically stimulated luminescent dosimeters, OSLDs, for clinical dosimetric measurements". Med Phys 34(12): 4594-4604(2007).
[3] J. Venselaar, H. Welleweerd y B. Mijnheer, “Tolerances for the accuracy of Photon beam dose calculations of treatment Planning Systems, Radiotherapy”. Oncol 60: 191-201 (2001)
[4] A. Dutreix et al., “Monitor unit calculation for high-energy photon beams”. ESTRO Booklet 3, physics for clinical radiotherapy. Leuven: Garant, (1997).
[5] Netherlands Commission on Radiation Dosimetry (NCS), “Recommendations for the determination and use of scatter correction factors of megavoltage photon beams”. NCS Report 12. Delft: NCS, (1998).
[6] B. Fraass et al., “Quality assurance for clinical radiotherapy treatment planning”, AAPM American Association of Physicists in Medicine, Radiation Therapy Committee Task Group 53, Med. Phys. 25, 1773-1829 (1998).
[7] J. Van Dyk et al., “Commissioning and quality assurance of treatment planning computers”. Int. J Radiatherapy Oncology Biol. Phys; 26:261±273 (1993).
[8] ICRU Report 42, “Use of Computers in External Beam Radiotherapy Procedures with High Energy Photons and Electrons”, Bethesda, Maryland USA (1987)
[9] A. Brahme, “Accuracy requirements and quality assurance of external beam therapy with photons and electrons”, Stockholm, Acta Oncologica, ISBN 1100-1704 (1988).
[10] TRS-430, IAEA, “Puesta en Servicio y Garantía de Calidad de los Sistemas de Planificación Computarizados para el Tratamiento del Cáncer con Radiación” (2004).
[11] J. Welleweerd y W. Van Der Zee, “Dose calculation for asymmetric fields using Plato version 2.01”. Abstract in Proc. Annual ESTRO Meeting, Edinburgh. Radiotherapy Oncology; 48(Suppl. 1):134 (1998)
[12] LandauerR (2019, Dic 16). MicrostarII Medical Dosimeter system User Manual v.1.3. [Online]. Available: https://www.landauer.com/sites/default/files/2020-01/MICROSTAR%20ii%20USER%20MANUAL.pdf
[13] LandauerR (2019). NanodotTM Dosimeter. [Online]. Available: https://www.landauer.com/sites/default/files/product-specification-file/50749%20NanoDot%20FDA.pdf
[14] C. A. Perks, G. Le Roy y B. Prugnaud, "Introduction of the inLight monitoring service" Adiation Protection Dosimetry (2007).
[15] P. A. Jursinic, "Changes in optically stimulated luminescent dosimeter (OSLD) dosimetric characteristics with accumulated dose" Med Phys 37(1): 132-140 (2010).
[16] S.W.S. Mckeever et al., “Concepts and approaches to in situ luminescence dating of martian sediments”. Radiation Measurement, 37, 527–534 (2003).
[17] E.G. Yukihara y S. W. Mckeever, “Optically stimulated luminescence (OSL) dosimetry in medicine”. Phys. Med. Biol.; 53: R351-R379 (2008).
[18] P. Alvarez, J. Aguirre y D. Followill, "SU-E-T-86: Evaluation of the OSLD system for remote dosimetry audits implemented by the RPC," Med. Phys. 38, 3505 (2011).
[19] J. Aguirre et al., "WED-BRB-08: Validation of the commissioning of an optically stimulated luminescence (OSL) system for remote dosimetry audits" Med. Phys. 37, 3428 (2010).
[20] C. Constantinou y F.H. Attix, B. R. Paliwal, “A solid water phantom material for radiotherapy x-ray and g-ray beam calibrations”. Med Phys; 9:436 (1982).
[21] H. E. Johns, J. R. Cunningham, “The Physics of Radiology”, Springfield, Illinois (1983).

Published

2022-06-30

How to Cite

[1]
Ángel Rodríguez Horna, “Proposal of a postal quality control system for the treatment planning system in teletherapy using OSL nanodot dosimeter”, TEC, vol. 32, no. 1, pp. 28–36, Jun. 2022.

Issue

Section

Medical physics

Most read articles by the same author(s)