Matrices Exponenciales y su relación con las matrices confuentes de Vandermonde
Palabras clave:
Matriz exponencial, Matriz de VandermondeResumen
Sea una matrizA2C(n;n) y deseamos calcular su matriz exponencial etA conociendo solamente los valores propios de A, no es necesario conocer los respectivos vectores propios. El enfoque que se presenta es la relación entre la matriz exponencial con las matrices con fuentes de Vandermon deV. Este enfoque y los métodos resultantes son muy simples y pueden ser considerados como una alternativa al usar la forma canónica de Jordan. El análisis de los algoritmos para inversión de la matriz V, así como la representación matricial deV1 son de interés independiente en muchas otras aplicaciones.
Descargas
Citas
2. C. Moler and C. F. Van Loan, Nineteen Dubious Ways to Compute the Exponential of a Matrix, SIAM Rev. 20 pp. 801-836 (1978).
3. C. Moler and C. F. Van Loan, Nineteen Dubious Ways to Compute the Exponential of a Matrix, Twenty-Five Years Later SIAM Rev. 45 pp. 1-46 (2003).
4. S.H. Hou and W.-K. Pang, Inversion of Con uent Vandermonde Matrices, Computers and Mathematics with applications, 43, pag. 1539-1547, (2002).
5. D. Kalman, Notes The Generalized Vandermonde Matrix, University Of Wisconsin-Green Bay, Gree Bay, WI 54302 (1984).
6. C. Pozrikidis, Numerical Computation in Science and Engineering, Oxford, University Press, (1998).
7. D. K. Faddeev and V. N. Faddeeva, Computational Methods of Linear Algebra, Freeman, San Franacisco, CA, (1963).
8. S. H. Hou, A simple proof of the Leverrier-Faddeev Characteristic Polynomial Algorithm, SIAM Rev. 40, pp. 706-709, (1998).
9. R. M. Benazic, Tópicos de Ecuaciones Diferenciales Ordinarias, Uni, Perú, (2007).
10. G. Labahn and T. Shalom, Inversion of Toeplitz Matrices with only two Standard Equations, Linear Algebra and its Applications. 175, 143-158, (1992).
11. G. Sansigre and M. Alvarez, On Bezoutian reduction with the Vandermonde matrix, Linear Algebra Appl. 121, pp. 401-408, (1989). REVCIUNI
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2021 REVCIUNI
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Los artículos publicados por REVCIUNI pueden ser compartidos a través de la licencia pública internacional Creative Commons: CC BY 4.0. Permisos lejos de este alcance pueden ser consultados a través del correo revistas@uni.edu.pe