Exponential Matrices and their relationship with the Vandermonde source matrices

Authors

  • Jesús Cernades Gómez Escuela Profesional de Matemática. Facultad de Ciencias. Universidad Nacional de Ingeniería
  • William Carlos Echegaray Castillo Escuela Profesional de Matemática. Facultad de Ciencias. Universidad Nacional de Ingeniería

Keywords:

Matrix exponential , Vandermonde matrix

Abstract

Let a matrix be A2C(n;n) and we want to calculate its exponential matrix etA knowing only the eigenvalues ​​of A, it is not necessary to know the respective eigenvectors. The approach presented is the relationship between the exponential matrix with the matrices with Vandermon deV sources. This approach and the resulting methods are very simple and can be considered as an alternative to using Jordan's canonical form. The analysis of the algorithms for inversion of the matrix V, as well as the matrix representation of V1, are of independent interest in many other applications.

Downloads

Download data is not yet available.

References

1. I. E. Leonard, The Matrix Exponential, SIAM Rev. 38 pp. 507-512 (1996).
2. C. Moler and C. F. Van Loan, Nineteen Dubious Ways to Compute the Exponential of a Matrix, SIAM Rev. 20 pp. 801-836 (1978).
3. C. Moler and C. F. Van Loan, Nineteen Dubious Ways to Compute the Exponential of a Matrix, Twenty-Five Years Later SIAM Rev. 45 pp. 1-46 (2003).
4. S.H. Hou and W.-K. Pang, Inversion of Con uent Vandermonde Matrices, Computers and Mathematics with applications, 43, pag. 1539-1547, (2002).
5. D. Kalman, Notes The Generalized Vandermonde Matrix, University Of Wisconsin-Green Bay, Gree Bay, WI 54302 (1984).
6. C. Pozrikidis, Numerical Computation in Science and Engineering, Oxford, University Press, (1998).
7. D. K. Faddeev and V. N. Faddeeva, Computational Methods of Linear Algebra, Freeman, San Franacisco, CA, (1963).
8. S. H. Hou, A simple proof of the Leverrier-Faddeev Characteristic Polynomial Algorithm, SIAM Rev. 40, pp. 706-709, (1998).
9. R. M. Benazic, Tópicos de Ecuaciones Diferenciales Ordinarias, Uni, Perú, (2007).
10. G. Labahn and T. Shalom, Inversion of Toeplitz Matrices with only two Standard Equations, Linear Algebra and its Applications. 175, 143-158, (1992).
11. G. Sansigre and M. Alvarez, On Bezoutian reduction with the Vandermonde matrix, Linear Algebra Appl. 121, pp. 401-408, (1989). REVCIUNI

Published

2021-06-18

How to Cite

Cernades Gómez, J., & Echegaray Castillo, W. C. (2021). Exponential Matrices and their relationship with the Vandermonde source matrices. Journal of the Science Faculty @ UNI, 17(1), 42–49. Retrieved from https://revistas.uni.edu.pe/index.php/revciuni/article/view/956

Issue

Section

Artículos