Spatial analysis of the socio-educational association with delay and school dropout in regular primary education by department, Peru 2016 to 2021

Authors

  • Magen Danielle Infante Rojas National University of Engineering, Lima, Peru https://orcid.org/0000-0002-9292-7457
  • Augusto Mayorca-Tinoco Cesar Vallejo University, Lima, Peru
  • Wilmer Wilson Aspajo Quiñonez Student - FIEECS - National University of Engineering, Lima, Peru
  • Miliani Stephany Quispe Bejar Student - FIEECS - National University of Engineering, Lima, Peru
  • Ruth Samanta Huamani Llactahuaman Student - FIEECS - National University of Engineering, Lima, Peru
  • Cristopher Norman Malaga Espinoza Student - FIEECS - National University of Engineering, Lima, Peru

DOI:

https://doi.org/10.21754/iecos.v24i2.1972

Keywords:

Socio-educational spatial autocorrelation, Univariate Morán Index, Bivariate Morán Index, primary school inter-annual dropout, primary school backwardness, Geary Clustering

Abstract

Basic Education in Peru is key factor for the development of the country. The Primary Education indicators published by the Institute of Statistics and Informatics (INEI) reveals the need for further research. Although there are various studies regarding primary education, they have not been as exhaustive as expected. For each level of basic education, the real-life situations are different, one of these levels is primary education, which the majority of Peruvians access. The objective is to establish the spatial socio-educational association of backwardness and school dropout. A data frame, called dataframe, was built with the Educational Quality Statistics (ESCALE) of the Ministry of Education (MINEDU) of Peru. In addition to spatial descriptive analysis, spatial auto-correlation at the Departmental level of backwardness and school dropout was verified, moreover, the factors chronic childhood malnutrition, children and adolescents who work and students with mothers with completed higher education are spatially associated with the backwardness and school dropout. This association was confirmed through the Weighted Spatial Regression model.

Downloads

Download data is not yet available.

Author Biography

Magen Danielle Infante Rojas, National University of Engineering, Lima, Peru

This research sought to estimate the Simplified Azbel model to verify that it is a good fit to Peruvian mortality rates for pension purposes using three estimation methods, with the maximum likelihood (ML), Log-linear Regression type and ordinary least squares (OLS) methods. The mortality tables were segmented by ages near zero, intermediate ages and ages near one. It was confirmed that there is a difference in fit between males and females. With the A/E and ARL similarity metrics, the original and the estimated mortality tables, the hypothesis is corroborated since it is concluded that the best estimates resulted for the SP2005 tables, for the male gender with the Log-linear Regression type and ordinary least squares methods, except for the range between 50 and 90 years of age. In women, there is only a good fit with the Log-linear Regression type method from 15 years of age onwards.  The fit to the SPP2017 tables is barely noticeable in men with the Log-linear Regression type method from the age of 70 years and in women from the age of 80 years.

References

Anselin, L. (1995). Local indicators of spatial association—LISA. Geographical analysis, 27(2), 93-115. https://doi.org/10.1111/j.1538-4632.1995.tb00338.x

Anselin, L. (2019). A local indicator of multivariate spatial association: extending Geary's C. Geographical Analysis, 51(2), 133-150. https://doi.org/10.1111/gean.12164

Arbia, G. (2006). Spatial econometrics: statistical foundations and applications to regional convergence. Springer Science & Business Media.

ASIS (2016). Departamentos de Lima 2016 [Archivo PDF]. https://www.dge.gob.pe/portal/Asis/indreg/asis_lima.pdf

Beltrán, A. (2013). El tiempo de la familia es un recurso escaso:¿ Cómo afecta su distribución en el desempeño? Apunte, 40(72), 117-156, 2013. https://doi.org/10.21678/apuntes.72.677

Boniolo, P., & Najmias, C. (2018). Abandono e atraso escolar na Argentina: uma abordagem desde as classes sociais. Tempo Social, 30(3), 217-247. https://doi.org/10.11606/0103-2070.ts.2018.121349

Camayo-Tolentino, E. V., Minaya-Del-Valle, R. A., & Ruiz-Ruiz, M. F. (2022). Formación ciudadana democrática intercultural de niñas en contextos rurales peruanos. Revista Brasileira de Educação, 27. https://doi.org/10.1590/S1413-24782022270061

Cardoso, A. R., & Verner, D. (2007). School drop-out and push-out factors in Brazil: The role of early parenthood, child labor, and poverty. IZA Discussion Paper, (2515). https://dx.doi.org/10.2139/ssrn.955862

CEPAL. (2022). Perú: migraciones internas y dinámica sociodemográfica de departamentos, provincias y distritos en las dos primeras décadas del siglo XXI [Archivo PDF]. https://repositorio.cepal.org/items/cdd34fd1-107a-456c-ac7a-5471ce545170

Decreto Supremo N.º 007-2021-MINEDU [Ministerio de Educación]. Decreto Supremo que modifica el reglamento de la Ley N° 2804, Ley General de Educación, aprobado por Decreto Supremo N° 011-2012-ED. 10 de mayo de 2021. D.O. No. 9

ESCALE (2023a). Magnitudes de la Educación - ESCALE - Unidad de Estadística Educativa. Recuperado de https://escale.minedu.gob.pe/magnitudes;jsessionid=10e2cb3352fc8d5927521e973a68

ESCALE (2023b). Serie desde 2016 - ESCALE - Unidad de Estadística Educativa. Recuperado de https://escale.minedu.gob.pe/ueetendencias2016

GeoDa (21 de julio de 2023). GeoDa on Github. Recuperado de http://geodacenter.github.io/

IGN (11 de agosto de 2023). Instituto Geográfico Nacional - Infraestructura de Datos Geoespaciales Fundamentales. https://www.idep.gob.pe/

Iqbal, A., Hassan, S., Mahmood, H., & Tanveer, M. (2022). Gender equality, education, economic growth and religious tensions nexus in developing countries: A spatial analysis approach. Heliyon, 8(11), e11394. https://doi.org/10.1016/j.heliyon.2022.e11394

INEI (2017). Compendio Estadístico Lima Provincias 2016 [Archivo PDF]. https://www.inei.gob.pe/media/MenuRecursivo/publicaciones_digitales/Est/Lib1521/Libro.pdf

INEI (2022). Perú: Indicadores de Educación según Departamentos, 2011-2021 [Archivo PDF].

https://cdn.www.gob.pe/uploads/document/file/3839416/Per%C3%BA%3A%20Indicadores%20de%20Educaci%C3%B3n%20seg%C3%BAn%20Departamentos.pdf?v=1668544569

Jopen, G., Gómez, W., & Olivera, H. (2014). Sistema educativo peruano: balance y agenda pendiente. [Archivo PDF]. http://files.pucp.edu.pe/departamento/economia/DDD379.pdf

Lind, M., Johansson, J., & Cooper, M. (2009). Many-to-many relational parallel coordinates displays. In 2009 13th International Conference Information Visualisation (pp. 25-31). https://doi.org/10.1109/IV.2009.43

López, C. N. (2020a). Caracterización de la región Lima Metropolitana 2020. SINEACE. https://hdl.handle.net/20.500.12982/6234

López, C. N. (2020b). Caracterización de la región Lima 2020. SINEACE. https://hdl.handle.net/20.500.12982/6223

Ministerio de Salud. (20 de julio de 2023). Sala de situación de Covid. Recuperado de https://www.dge.gob.pe/covid19.html

Nishida, F. H., Nicolella, A. C., Canassa, B. J., Espinoza, D. D. F., & Liduares, T. Q. (2022). Impactos da aposentadoria rural sobre o abandono escolar no Brasil. Revista de Economia e Sociologia Rural, 60(spe). https://doi.org/10.1590/1806-9479.2021.251012

Resolución Viceministerial N.º 193-2020-MINEDU de 2020 [Ministerio de Educación]. Aprobar el documento normativo denominado "Orientaciones para la evaluación de competencias de estudiantes de la Educación Básica en el marco de la emergencia sanitaria por la COVID-19". 11 de octubre de 2020

Seshie-Nasser, H. A., & Oduro, A. D. (2016). Delayed primary school enrolment among boys and girls in Ghana. International Journal of Educational Development, 49, 107-114. https://doi.org/10.1016/j.ijedudev.2015.12.004

Shekhar, S., & Xiong, H. (Eds.). (2007). Encyclopedia of GIS. Springer Science & Business Media. https://doi.org/10.1007/978-3-319-17885-1

Sokal, R. R., Oden, N. L., & Thomson, B. A. (1998). Local spatial autocorrelation in biological variables. Biological Journal of the Linnean Society, 65(1), 41-62. https://doi.org/10.1111/j.1095-8312.1998.tb00350.x

Tang, K., Li, Z., & He, C. (2023). Spatial distribution pattern and influencing factors of relative poverty in rural China. Innovation and Green Development, 2(1), 100030. https://doi.org/10.1016/j.igd.2022.100030

Tovar Obregón, M., & Rios Cataño, C. (2017). Trabajo infantil y deserción escolar en el Perú al 2015. Apuntes De Ciencia & Sociedad, 7(1).

https://doi.org/10.18259/acs.2017008

Walsemann, K. M., Fisk, C. E., & Dues, A. N. (2021). A spatial analysis of county-level education context and population health and wellbeing. Wellbeing, Space and Society, 2, 100002. https://doi.org/10.1016/j.wss.2020.100002

Published

2023-12-31

How to Cite

Infante Rojas, M. D., Mayorca-Tinoco , A., Aspajo Quiñonez, W. W., Quispe Bejar, M. S., Huamani Llactahuaman, R. S., & Malaga Espinoza, C. N. (2023). Spatial analysis of the socio-educational association with delay and school dropout in regular primary education by department, Peru 2016 to 2021. Revista IECOS, 24(2), 101–132. https://doi.org/10.21754/iecos.v24i2.1972

Issue

Section

Research Articles

Most read articles by the same author(s)