Spatial analysis of the socio-educational association with delay and school dropout in regular primary education by department, Peru 2016 to 2021
DOI:
https://doi.org/10.21754/iecos.v24i2.1972Keywords:
Socio-educational spatial autocorrelation, Univariate Morán Index, Bivariate Morán Index, primary school inter-annual dropout, primary school backwardness, Geary ClusteringAbstract
Basic Education in Peru is key factor for the development of the country. The Primary Education indicators published by the Institute of Statistics and Informatics (INEI) reveals the need for further research. Although there are various studies regarding primary education, they have not been as exhaustive as expected. For each level of basic education, the real-life situations are different, one of these levels is primary education, which the majority of Peruvians access. The objective is to establish the spatial socio-educational association of backwardness and school dropout. A data frame, called dataframe, was built with the Educational Quality Statistics (ESCALE) of the Ministry of Education (MINEDU) of Peru. In addition to spatial descriptive analysis, spatial auto-correlation at the Departmental level of backwardness and school dropout was verified, moreover, the factors chronic childhood malnutrition, children and adolescents who work and students with mothers with completed higher education are spatially associated with the backwardness and school dropout. This association was confirmed through the Weighted Spatial Regression model.
Downloads
References
Anselin, L. (1995). Local indicators of spatial association—LISA. Geographical analysis, 27(2), 93-115. https://doi.org/10.1111/j.1538-4632.1995.tb00338.x
Anselin, L. (2019). A local indicator of multivariate spatial association: extending Geary's C. Geographical Analysis, 51(2), 133-150. https://doi.org/10.1111/gean.12164
Arbia, G. (2006). Spatial econometrics: statistical foundations and applications to regional convergence. Springer Science & Business Media.
ASIS (2016). Departamentos de Lima 2016 [Archivo PDF]. https://www.dge.gob.pe/portal/Asis/indreg/asis_lima.pdf
Beltrán, A. (2013). El tiempo de la familia es un recurso escaso:¿ Cómo afecta su distribución en el desempeño? Apunte, 40(72), 117-156, 2013. https://doi.org/10.21678/apuntes.72.677
Boniolo, P., & Najmias, C. (2018). Abandono e atraso escolar na Argentina: uma abordagem desde as classes sociais. Tempo Social, 30(3), 217-247. https://doi.org/10.11606/0103-2070.ts.2018.121349
Camayo-Tolentino, E. V., Minaya-Del-Valle, R. A., & Ruiz-Ruiz, M. F. (2022). Formación ciudadana democrática intercultural de niñas en contextos rurales peruanos. Revista Brasileira de Educação, 27. https://doi.org/10.1590/S1413-24782022270061
Cardoso, A. R., & Verner, D. (2007). School drop-out and push-out factors in Brazil: The role of early parenthood, child labor, and poverty. IZA Discussion Paper, (2515). https://dx.doi.org/10.2139/ssrn.955862
CEPAL. (2022). Perú: migraciones internas y dinámica sociodemográfica de departamentos, provincias y distritos en las dos primeras décadas del siglo XXI [Archivo PDF]. https://repositorio.cepal.org/items/cdd34fd1-107a-456c-ac7a-5471ce545170
Decreto Supremo N.º 007-2021-MINEDU [Ministerio de Educación]. Decreto Supremo que modifica el reglamento de la Ley N° 2804, Ley General de Educación, aprobado por Decreto Supremo N° 011-2012-ED. 10 de mayo de 2021. D.O. No. 9
ESCALE (2023a). Magnitudes de la Educación - ESCALE - Unidad de Estadística Educativa. Recuperado de https://escale.minedu.gob.pe/magnitudes;jsessionid=10e2cb3352fc8d5927521e973a68
ESCALE (2023b). Serie desde 2016 - ESCALE - Unidad de Estadística Educativa. Recuperado de https://escale.minedu.gob.pe/ueetendencias2016
GeoDa (21 de julio de 2023). GeoDa on Github. Recuperado de http://geodacenter.github.io/
IGN (11 de agosto de 2023). Instituto Geográfico Nacional - Infraestructura de Datos Geoespaciales Fundamentales. https://www.idep.gob.pe/
Iqbal, A., Hassan, S., Mahmood, H., & Tanveer, M. (2022). Gender equality, education, economic growth and religious tensions nexus in developing countries: A spatial analysis approach. Heliyon, 8(11), e11394. https://doi.org/10.1016/j.heliyon.2022.e11394
INEI (2017). Compendio Estadístico Lima Provincias 2016 [Archivo PDF]. https://www.inei.gob.pe/media/MenuRecursivo/publicaciones_digitales/Est/Lib1521/Libro.pdf
INEI (2022). Perú: Indicadores de Educación según Departamentos, 2011-2021 [Archivo PDF].
Jopen, G., Gómez, W., & Olivera, H. (2014). Sistema educativo peruano: balance y agenda pendiente. [Archivo PDF]. http://files.pucp.edu.pe/departamento/economia/DDD379.pdf
Lind, M., Johansson, J., & Cooper, M. (2009). Many-to-many relational parallel coordinates displays. In 2009 13th International Conference Information Visualisation (pp. 25-31). https://doi.org/10.1109/IV.2009.43
López, C. N. (2020a). Caracterización de la región Lima Metropolitana 2020. SINEACE. https://hdl.handle.net/20.500.12982/6234
López, C. N. (2020b). Caracterización de la región Lima 2020. SINEACE. https://hdl.handle.net/20.500.12982/6223
Ministerio de Salud. (20 de julio de 2023). Sala de situación de Covid. Recuperado de https://www.dge.gob.pe/covid19.html
Nishida, F. H., Nicolella, A. C., Canassa, B. J., Espinoza, D. D. F., & Liduares, T. Q. (2022). Impactos da aposentadoria rural sobre o abandono escolar no Brasil. Revista de Economia e Sociologia Rural, 60(spe). https://doi.org/10.1590/1806-9479.2021.251012
Resolución Viceministerial N.º 193-2020-MINEDU de 2020 [Ministerio de Educación]. Aprobar el documento normativo denominado "Orientaciones para la evaluación de competencias de estudiantes de la Educación Básica en el marco de la emergencia sanitaria por la COVID-19". 11 de octubre de 2020
Seshie-Nasser, H. A., & Oduro, A. D. (2016). Delayed primary school enrolment among boys and girls in Ghana. International Journal of Educational Development, 49, 107-114. https://doi.org/10.1016/j.ijedudev.2015.12.004
Shekhar, S., & Xiong, H. (Eds.). (2007). Encyclopedia of GIS. Springer Science & Business Media. https://doi.org/10.1007/978-3-319-17885-1
Sokal, R. R., Oden, N. L., & Thomson, B. A. (1998). Local spatial autocorrelation in biological variables. Biological Journal of the Linnean Society, 65(1), 41-62. https://doi.org/10.1111/j.1095-8312.1998.tb00350.x
Tang, K., Li, Z., & He, C. (2023). Spatial distribution pattern and influencing factors of relative poverty in rural China. Innovation and Green Development, 2(1), 100030. https://doi.org/10.1016/j.igd.2022.100030
Tovar Obregón, M., & Rios Cataño, C. (2017). Trabajo infantil y deserción escolar en el Perú al 2015. Apuntes De Ciencia & Sociedad, 7(1).
https://doi.org/10.18259/acs.2017008
Walsemann, K. M., Fisk, C. E., & Dues, A. N. (2021). A spatial analysis of county-level education context and population health and wellbeing. Wellbeing, Space and Society, 2, 100002. https://doi.org/10.1016/j.wss.2020.100002
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Magen Danielle Infante Rojas, Augusto Mayorca Tinoco , Wilmer Wilson Aspajo Quiñonez, Miliani Stephany Quispe Bejar, Ruth Samanta Huamani Llactahuaman, Cristopher Norman Malaga Espinoza
This work is licensed under a Creative Commons Attribution 4.0 International License.
CC BY 4.0 DEED Attribution 4.0 International