Drying aji panca in a solar photovoltaic dryer of heat pipe

Collaboration with the XXIII Peruvian Symposium on Solar Energy

Authors

DOI:

https://doi.org/10.21754/tecnia.v30i1.853

Keywords:

Solar vacuum tube dryer, Chili pepper, Photovoltaic system

Abstract

In this work, tests were carried out on the drying of the ají panca in a forced air solar dryer using fifteen vacuum tubes (Heat pipe), a closed cabin where the product is placed and a squirrel cage turbine that is fed by a system of two photovoltaic panels of 50 W each. The heated air is driven by the turbine from the vacuum tubes to the product in the cabin, in this work the unidimensional Fick difusion equation and numerical methods were used to determine the mass transfer coefficient 2.61 x 10- 9 ms-1 and the effective diffusivity coefficient 1.52 x 10-10 m2 s-1 and it was concluded that the drying temperature of is 55 °C is the one that best fits the results estimated by the model. The solar vacuum tube dryer is capable of maintaining an operating temperature between 50 °C to 55 °C for an irradiance of 450 to 1100 W /m2 between 9:30 am and 2:30 pm, under these conditions, in two days it is possible to dry the ají panca up to 8% moisture content. Traditional drying of this product takes between seven and ten days.

Downloads

Download data is not yet available.

References

[1] A. Fudholi, M. Y. Othman, M. H. Ruslan and K. Sopian, “Drying of malaysian capsicum annuum L. (Red Chili) dried by open and solar drying”, International Journal of Photoenergy, vol. 2013, pp. 1-9, feb. 2013.
[2] F. J. Arranz, E. C. Correa, H. T. Jímenez, B. Diezma, J. García-Hierro, J. I. Robla and P. Barreiro, "Empleo de métodos numéricos para el ajuste de los coeficientes de difusividad (D) y convectivo de transferencia de masa (hm) en el secado de alimentos", in VI Congreso Ibérico de Agroingeniería, Portugal, 2011.
[3] C. H. Guzmán Valdivia, J. L. Carrera Escobedo, M. A García Ruíz, A. Ortíz Rivera and O. Désiga Orenday, “Design, development and control of a portable laboratory for the chili drying process study", Mechatronics, vol. 39, pp. 160-173, 2016.
[4] J. Hernández, P. Quinto, J. Cuevas, R. Acosta and J. Aguilar, “Estudio Del Secado De Capsicum Annuum L a Través Del Modelo De Luikov”, Caos Conciencia, vol. 1, pp. 21-30, 2008.
[5] J. Hernández, P. Quinto, J. Cuevas, R. Acosta and J. Aguilar, “Estudio Del Secado De Productos Agricolas”, 2008.
[6] D. M. Kadam, R. K. Goyal, K. K. Singh and M. K. Gupta, “Thin layer convective drying of mint leaves", Journal of Medicinal Plants Research, vol. 5, no. 2, pp. 164-170, 2011.
[7] MINAGRI (2017, Oct 24). Plan de Desarrollo Sostenible de las especies del género Capsicum 2018-2028 [online]. Available: https://busquedas.elperuano.pe/normaslegales/aprueban-el-plan-de-desarrollo-sostenible-de-las-especies-d-resolucion-ministerial-n-0434-2017-minagri-1580151-1/
[8] K. Sanatombi and S. Rajkumari, "Effect of Processing on Quality of Pepper: A Review", Food Reviews International, pp. 1-18, 2019.

Published

2020-05-09

How to Cite

[1]
J. Palo Tejada, A. Puma Taco, and E. Campos Falcón, “Drying aji panca in a solar photovoltaic dryer of heat pipe: Collaboration with the XXIII Peruvian Symposium on Solar Energy”, TEC, vol. 30, no. 1, pp. 34–38, May 2020.

Issue

Section

Solar and photovoltaic energy