Numerical simulation of the air flow in an intake flange of a competition vehicle
DOI:
https://doi.org/10.21754/tecnia.v30i2.809Keywords:
Intake flange, Deceleration, Airflow, Shock wave, Flow separation., Intake flange, Deceleration, Airflow, Shock wave, Flow separationAbstract
The intake flange is a mechanical device that restricts the amount of mass air flow to be injected into the engine cylinder, and is used in racing vehicles. In the present work, the air flow is simulated in a 2D computational domain with axial symmetry for the geometry of a convergent-divergent intake flange, in order to determine the variations of the thermodynamic parameters of the flow field. For the simulation of the flow, the ANSYS-Fluent code that uses the finite volume method was used. The governing equations were used for compressible flow: mass equation, amount of movement, energy and state; in addition, Menter’s SST turbulence model was used. The results of the density, velocity, pressure and temperature flow field, as well as the Mach number, for six pressure ratios, show variations in thermodynamic quantities in different regions of the domain, before and after the shock wave; as well as the regions where separation and recirculation of the flow occurs in the adjacencies of the divergent wall. It is concluded that, when the shock occurs, the curvature of the wall of the divergent section contributes to the detachment of the boundary layer, cuasing transition in the flow development. In addition, for the outlet pressure of , the flow reaches a máximum value of Mach 1.8, and temperature of 180 K (-93 ºC); and at the outlet of the flange the flow reaches a lower value of Mach 1.
Downloads
References
[2] RFEA Real Federación Española de Automobilismo, (2019, Dic 12). [online]. Available: http://rfda.es
[3] F. Álvarez, J. Aranda, H. Baylos, J. Díaz, F. Plaza y M. Sallent “Manual comisario técnico, Comisión de voluntarios oficiales”, Real Federación Española de Automovilismo, FEA, V 2015.
[4] J. Anderson, Fundamentals of aerodynamics. Third Edition, Boston, Mc Graw-Hill, 2006.
[5] F. White, Viscous fluid flow. McGraw-Hill, 1991.
[6] H. Schlichting, Boundary-layer theory. McGraw Hill, 2016.
[7] T.V. Karman, “The fundamentals of the statistical theory of turbulence”, Journal of the aeronautical Sciences, vol. 4, no 4, pp 131-138, 1937.
[8] P. Krehl, y S. Engemann, “August toepler-the first who visualized shock waves”, Shock Waves, vol. 5, n0 1, pp1-18, 1995.
[9] J. Blazek, Computational fluid dynamics principles and applications. Butterworth-Heinemann, 2015.
[10] D.C. Wilcox, Turbulence modeling for CFD. DCW Industries, 2012.
[11] S.L. Tolentino M., M.A. Parco, S. Caraballo, y J. Castillo, “Formas de ondas de choque en una brida de admisión de un vehículo de competición”, XV Jornadas de Investigación 2017, UNEXPO Vice-Rectorado Puerto Ordaz, Venezuela, pp 3-9.
[12] F. Menter, “Two equation eddy-viscosity turbulence models for engineering applications”, AIAA Journal, vol. 32, pp 1598-1605, 1994.
[13] VOLKSWAGEN AG-SEAT S.A. SKODA automobilova a.s.-AUDI AG. “Brida tipo Diesel, 35 mm, Material de aluminio AW 7075 T6, Rm=540 MPa. Plano PTDI 145 563”.
[14] F. White, Mecánica de los Fluidos. Sexta Edición, Mc Graw-Hill, Interamericana de España, 2008.
[15] S.L.B. Tolentino M., “Evaluation of turbulence models for the air flow in a planar nozzle”, Ingenius no 22 (julio-diciembre), pp 25-37, 2019.
[16] S.L. Tolentino, y S. Caraballo, “Simulación numérica del flujo de aire con onda de choque en un difusor transónico”, Revista Universidad, Ciencia y Tecnología (UCT), vol. 21, no 82, pp 4-15, 2017.