Behavior of low voltage networks in the presence of photovoltaic generation.

Authors

  • Joel Villavicencio Gastelu Dept. of Electrical Engineering, UNESP - Sao Paulo State University, Ilha Solteira, Brazil
  • Joel David Melo Trujillo The Engineering, Modeling and Applied Social Sciences Center – CECS, Federal University of ABC – UFABC, Santo André, Brazil
  • Antônio Padilha Feltrin Dept. of Electrical Engineering, UNESP - Sao Paulo State University, Ilha Solteira, Brazil

DOI:

https://doi.org/10.21754/tecnia.v21i2.790

Keywords:

Active energy loss, Low-voltage networks, Photovoltaic sytem, Overvoltage

Abstract

The impact of photovoltaic generation in the electrical network’ behaviour depends on the quantity of injected power. Thus, during the network analysis, all factor that could influence that power must be considered. In this paper, a methodology to analyse the network’ behaviour under the presence of photovoltaic generation is presented. The proposed methodology takes into account the stochastic nature of the photovoltaic insertion in the network via the Monte Carlo simulation method. In order to evaluate the influence of coincidence between PV generation and demand, a three-phase low-voltage network with residential and commercial users is considered. Simulations are performed along a day and considering several levels of photovoltaic penetration. Therefore, the proposed methodology can be used in operation planning studies performed by utilities

Downloads

Download data is not yet available.

References

[1] IEA Photovoltaic Power System Programme (IEA PVPS. 2019 Snapshot of Global PV Markets , 2019
[2] R. Torquato, D. Salles, C. Oriente Pereira, P. C. M. Meira y W. Freitas, “A Comprehensive Assessment of PV Hosting Capacity on Low-Voltage Distribution Systems,” IEEE Trans. Power Deliv., vol. 33, no. 2, pp. 1002–1012, Apr. 2018.
[3] R. S. C. Camargos, R. A. Shayani y M. A. G. de Oliveira, “Evaluation whether photovoltaic distributed generation postpones or anticipates reinforcements detected by distribution network expansion planning,” IET Gener. Transm. Distrib., vol. 13, no. 7, pp. 1036–1048, Apr. 2019.
[4] H. Pezeshki, P. J. Wolfs y G. Ledwich, “Impact of High PV Penetration on Distribution Transformer Insulation Life,” IEEE Trans. Power Deliv., vol. 29, no. 3, pp. 1212–1220, Jun. 2014.
[5] S. Pukhrem, M. Basu, M. F. Conlon, and K. Sunderland, “Enhanced Network Voltage Management Techniques Under the Proliferation of Rooftop Solar PV Installation in Low-Voltage Distribution Network,” IEEE J. Emerg. Sel. Top. Power Electron., vol. 5, no. 2, pp. 681–694, Jun. 2017.
[6] M. Ahmadi, M. E. Lotfy, R. Shigenobu, A. Yona y T. Senjyu, “Optimal sizing and placement of rooftop solar photovoltaic at Kabul city real distribution network,” IET Gener. Transm. Distrib., vol. 12, no. 2, pp. 303–309, Jan. 2018.
[7] Y. Xu, Z. Y. Dong, R. Zhang y D. J. Hill, “Multi-Timescale Coordinated Voltage/Var Control of High Renewable-Penetrated Distribution Systems,” IEEE Trans. Power Syst., vol. 32, no. 6, pp. 4398–4408, Nov. 2017.
[8] D. Schwanz, F. Moller, S. K. Ronnberg, J. Meyer y M. H. J. Bollen, “Stochastic Assessment of Voltage Unbalance Due to Single-Phase-Connected Solar Power,” IEEE Trans. Power Deliv., vol. 32, no. 2, pp. 852–861, Apr. 2017.
[9] A. Navarro-Espinosa y L. F. Ochoa, “Probabilistic Impact Assessment of Low Carbon Technologies in LV Distribution Systems,” IEEE Trans. Power Syst., vol. 31, no. 3, pp. 2192–2203, 2016.
[10] C. Zhang, Y. Xu, Z. Dong y J. Ravishankar, “Three-Stage Robust Inverter-Based Voltage/Var Control for Distribution Networks with High-Level PV,” IEEE Trans. Smart Grid, vol. 10, no. 1, pp. 782–793, 2019.
[11] REN21, “Renewables 2019 Global Status Report,” Paris, 2019.
[12] B. Mountain and P. Szuster, “Solar Everywhere,” IEEE power energy Mag., no. August, pp. 53–60, 2015.
[13] Agência Nacional de Energia Elétrica - ANEEL. Geração distribuída 2019. [En linea]. Disponible en: http://www2.aneel.gov.br/scg/gd/GD_Estadual.asp.
[14] T. Aziz y N. Ketjoy, “PV Penetration Limits in Low Voltage Networks and Voltage Variations,” IEEE Access, vol. 5, pp. 16784–16792, 2017.
[15] A. Dubey y S. Santoso, “On Estimation and Sensitivity Analysis of Distribution Circuit’s Photovoltaic Hosting Capacity,” IEEE Trans. Power Syst., vol. 32, no. 4, pp. 2779–2789, 2017.
[16] Agência Nacional de Energia Elétrica - ANEEL.(17, abr 2012). Resolução normativa No 482, Digital Times [En línea]. Disponible en: http://www2.aneel.gov.br/cedoc/bren2012482.pdf.
[17] Electric Power Research Institute - EPRI. (2018). OpenDSS Manual,” 2018. [En linea]. Disponible en: https://smartgrid.epri.com/SimulationTool.aspx
[18] Python Software Foundation. (2019). Python Language Reference [En linea]. Disponible en: https://docs.python.org/3/reference/.

Published

2021-06-18

How to Cite

[1]
J. Villavicencio Gastelu, J. D. Melo Trujillo, and A. Padilha Feltrin, “Behavior of low voltage networks in the presence of photovoltaic generation”., TECNIA, vol. 31, no. 2, pp. 54–60, Jun. 2021.

Issue

Section

Renewable energy, electrical engineering and / or power systems