Characterization of prime numbers
DOI:
https://doi.org/10.21754/tecnia.v22i2.78Keywords:
divisor, prime number, composite number, characterization, conjectureAbstract
The prime numbers motivate the investigation in number theory; nowadays, does not exist a formula that allows get those numbers, and that the distribution thereof is considered random. There are methods to find whether a number is prime or composite. This article presents a characterization of prime numbers which is the complement of composite numbers.
Downloads
References
[1] Herstein, I. N., “Topics in Algebra”, pp. 18, Blaisdell Publishing Company, New York, 1964.
[2] Lang, S., “Linear Algebra, pp. 210, Addison-Wesley Publishing Company, Inc., U.S.A., 1966.
[3] Olmsted John, M. H., “Real Variables, pp. 11, Appleton-Century-Crofts, Inc., New York, 1959.
[4] Potápov, M., “Álgebra y análisis de funciones elementales”, pp. 15, Editorial MIR, Moscú, 1986.
[5] Zaring, W. M., “An Introduction to Analysis”, pp. 96, the Macmillan Company, New York, 1967.
[6] http://www.mat.ucm.es/~dazagrar/docencia/tn6.pdf, p.1
[7] http://www2.uca.es/matematicas/Docencia/ESI/1711003/Apuntes/Leccion11.pdf, 11
[8] http://w3.math.uminho.pt/site/files/historicooutros/1596_Capitulo3(EulerWilson).pdf, p.9
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2012 TECNIA
This work is licensed under a Creative Commons Attribution 4.0 International License.