Modeling of resistence to the compression of concrete mediante redes neuronal artificiales

Authors

  • Leoncio Luis Acuña Pinaud Facultad de Ingeniería Industrial y de Sistemas, Universidad Nacional de Ingeniería. Lima, Perú.
  • Ana Victoria Torre Carrillo Facultad de Ingeniería Civil, Universidad Nacional de Ingeniería. Lima, Perú.
  • Isabel Moromi Nakata Facultad de Ingeniería Civil, Universidad Nacional de Ingeniería. Lima, Perú.
  • Pedro Celino Espinoza Haro Departamento de Ingeniería Forestal, Universidad Politécnica de Madrid. Madrid, España.
  • Francisco García Fernández Departamento de Ingeniería Forestal, Universidad Politécnica de Madrid. Madrid, España.

DOI:

https://doi.org/10.21754/tecnia.v23i2.71

Keywords:

concrete, compression strength, artificial neural networks

Abstract

The use of concrete as a structural element increases year by year. However, this product needs very stringent control of its mechanical properties in order to be uses as structural element. This type of control requires to have very large testing equipment with a load capacity of up to 3.000KN. Production control would benefit greatly from the use of a highly reliable alternative method that would enable the mechanical properties to be found through more easily obtained physical and mechanical properties. The high capacity of artificial neural networks (ANN) to model a broad range of industrial processes makes them a very useful instrument in the concrete industry. In this study, one neural network was developed to obtain the properties of compressive strength. This property was then modeled though the composition of concrete and manufacturing parameters. The network designed, a multilayer perceptron, allowed the compression strength to be obtained with a regression coefficient of 0,97. This demonstrates the effectiveness of ANN for obtaining the mechanical properties of compression strength of concrete. 

Downloads

Download data is not yet available.

References

[1] Pérez Delgado, M. L., Martin Martín, Q. “Aplicaciones de las redes neuronales a la estadística. Cuadernos de Estadística”; Ed. La Muralla, S.A. 1993.

[2] Isasi Viñuela, P., Galván León, I. M., “Redes Neuronales Artificiales, un enfoque práctico”; Pearson Educación, S. A., 2004.

[3] Hagan, M. T., Demuth, H. B., Beale, M., “Neural Network Design”; PWS Pub. Co.; 1st edition. 1995.

[4] Demuth, H., Beale, M., Hagan, M., “Neural Network Toolbox User’s guide, version 4”; The Mathworks InC.1996.

[5] Mukherjee, S., Schmauder, M., Rühle, M., “Artificial neural networks for the prediction of mechanical behaviour of metal matrix composites”; Acta Metallurgica Materialia Vol. 43 - 11, pp. 4083 - 4091. 1995.

[6] Malinov, S., Sha, W., McKeown, J. J., “Modelling the correlation between processing parameters and properties in titanium alloys using artificial neural networks”; Computational Materials Science Vol. 21, pp. 375 - 394. 2001.

[7] Hassan, A. M., Alrashdan, A., Hayajneh, M. T., Mayyas, A. T., “Prediction of density, porosity and hardness in aluminium-cooper-based composite materials using artificial neural network”; Journal of Materials Processing Technology Vol. 209, pp. 894 - 899. 2009.

[8] Ozerdem, M. S., Kolukisa, S., “Artificial neural network approach to predict the mechanical properties of Cu-Sn-Pb-Zn-Ni cast alloys”; Materials and Design Vol. 30, pp. 764 - 769. 2009.

[9] Reddy, N. S., Krishnaiah, J., Hong, S. G., Lee, J. S., “Modeling medium carbon steels by using artificial neural networks”; Materials Science and Engineering A., Vol. 508, pp. 93 - 105. 2009.

[10] Çanakci, H., Pala, M., “Tensile strength of basalt from a neural network”; Engineering Geology Vol. 94 (2007), pp. 10 - 18.

[11] Cook, D. F., Chiu, C. C., “Predicting the internal bond strength of particle board, using a radial basis function neural network”; Engineering Applications of Artificial Intelligence Vol. 10 - 2, pp. 171 - 177, 1997.

[12] García Fernández, F., Esteban, L. G., De Palacios, P., Navarro, N., Conde, M., “Prediction of standard particle board mechanical properties utilizing an artificial neural network and subsequent comparison with a multivariate regression model”; Investigación Agraria: Sistemas y Recursos Forestales Vol. 17 - 2, pp. 178 - 187. 2008.

[13] García Fernández, F., De Palacios, P., García Esteban, L., García - Iruela, A., González Rodrigo, B., Menasalvas, E., “Prediction of MOR and MOE of structural plywood board using an artificial neural network and comparison with a multivariate regression model”; Composites: Part B. Vol. 43, pp. 3528 - 3533. 2012.

[14] Başyigit, C., Akkurt, I., Kilincarsian, S., Beycioglu, A., “Prediction of compressive strength of heavy weight concrete by ANN and FL models”; Neural Computing and Applications Vol. 19, pp. 507 - 513. 2010.

[15] Yaprak, H., Karaci, A., Demir, I., “Prediction of the effect of varying cure conditions and w/c ratio on the compressive strength of concrete using artificial neural networks”; Neural Computing and Applications Vol. 22, pp. 133 - 141. 2013.

[16] ASTM C 192/C 192M, “Standard Practice for Making and Curing Concrete Test Specimens in the Laboratory”; The American Society for Testing Materials. 2000.

[17] ASTM C 39/C 39M, “Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens”; The American Society for Testing Materials. 2001.

[18] ASTM C 150, “Standard Specification for Portland Cement”; The American Society for Testing Materials. 2002.

[19] Sha, W., “Comment on the issues of statistical modelling with particular reference to the use of artificial neural networks”. Applied Catalysis A: General Vol. 324, pp. 87 - 89. 2007.

[20] Yeh, I. C., “Modeling of strength of HP Cusing ANN”; Journal of Cement and Concrete Research Vol. 28 - 12, pp. 1797 - 1808. 1998.

[21] Lee, S. C., “Prediction of concrete strength using artificial neural networks”; Journal of Engineering Structure Vol.25, pp. 849 - 857. 2013.

[22] Oztas, A., Pala, M., Ozbay, E., Kanka, E., Caglar, N., Bhatti, M. A., “Predicting the compressive strength and slum of high strength concrete using neural network”; Construction and Building Materials Vol. 20 - 9, pp. 769 - 775. 2006.

[23] Ukrainczyk, N., Ukrainczyk, V., “A neural network method for analysing concrete durability”. Magazine of Concrete Research Vol. 60 - 7, pp. 475 - 486. 2008.

[24] McBride, J., Malinov, S., Sha, W., “Modelling tensile properties of gamma-based titanium aluminides using artificial neural network”; Material Science and Engineering A Vol. 384, pp.129 - 1. 2004.

Published

2013-12-01

How to Cite

[1]
L. L. Acuña Pinaud, A. V. Torre Carrillo, I. Moromi Nakata, P. C. Espinoza Haro, and F. García Fernández, “Modeling of resistence to the compression of concrete mediante redes neuronal artificiales”, TECNIA, vol. 23, no. 2, pp. 11–20, Dec. 2013.

Issue

Section

Articles