Classification of EEG signals using LDA and QDA applied to a Brain Interface - Computer based on P300

Authors

  • Franklin Alfredo Cabezas Faculty of Electrical and Electronic Engineering, National University of Engineering. Lima Peru
  • Fermín Rafael Cabezas Soldevilla Faculty of Electrical and Electronic Engineering, National University of Engineering. Lima Peru.

DOI:

https://doi.org/10.21754/tecnia.v28i2.573

Keywords:

P300, Machine Learning, Brain –Computer Interface, Neurodegenerative Diseases

Abstract

Different Machine Learning techniques have been used in order to identify the wishes of patients with neurodegenerative diseases. For this purpose, a database of electroencephalographic (EEG) signals was used, which were filtered and processed. The determination of the wills of patients was achieved through the identification of brain waves P300, these signals are presented in the brain in response to an unexpected stimulus and among its many applications is the implementation of the so-called Brain-Computer Interface .

Downloads

Download data is not yet available.

References

[1]Cabezas F. 2018. Identificación de Potenciales Eléctricos relacionados a eventos seleccionados por pacientes con enfermedades neurológicas empleando Transformada Wavelet. Tesis de Maestría(datos no publicados). Universidad Nacional de Ingeniería. Perú.

[2] Hoffmann U. et al. 2007. An Efficient P300 –based brain –computer interface for disabled subjects.Journal of Neuroscience Methods 167, 115 –125.

[3] FranzE.2014. Development of a Fast and Efficient Algorithm for P300 Event Related Potential Detection.Master’s Thesis.Temple University. United States.

[4] PolichJ. 1986. Normal variation of P300 from auditory stimuli.

[5] R. Sepúlveda et al. Clasificación de señales EEG mediante redes neuronales artificiales. Computación y sistemas, Vol. 19, N° 1, 2015, pp. 69 –88.

[6] Artusi X. 2013. Interface Cereveau Machine avec adaptation automatique à l’utilisateur. PhD Dissertation. École Centrale de Nantes. France.

[7] Fazel R et al. 2012. P300 brain computer interface: current challenges and emerging trends. Frontiers in Neuroengineering, 1(1), 5:14.

[8] Girase P, Deshmukh M. 2016. A Review of Brain Computer Interface. International Conference on Global Trends in Engineering, Technology and Management (ICGTETM).

[9] Henríquez C. 2014. Estudio de técnicas de análisis y clasificación de señales EEG en el contexto de Sistemas BCI. Tesis de Maestría. Universidad Autónoma de Madrid. España.

[10] Nicolás –Alonso L y Gómez –Gil J. 2012. Brain Computer Interfaces, a Review. Sensors, 12(2), 1211 –1279.

[11] Nicolás Alonso, L. 2012. Clasificación de características de electroencefalogramas en sistemas Brain Computer Interface basados en ritmos sensoriomotores. Tesis de Maestría. Universidad de Valladolid. España.

[12] Won D, Zhang H, Guan C & Lee S. 2014. A BCI Speller based on SSVEP using high frequency stimuli design. IEEE International Conference on Systems, Man and Cybernetics.

[13] Combaz A & Van Hulle. 2015. Simultaneous Detection of P300 and Steady –State Visually Evoked Potentials for Hybrid Brain –Computer Interface.

[14] Achic F et al. 2016. Hybrid BCI System to Operate and Electric Wheelchair and a Robotic Arm for Navigation and Manipulation Tasks. ARSO.

[15] Amiri S, Rabbi, A, Azinfar, L & Fazel –Rezai R. 2013. A Review of P300, SSVEP and Hybrid P300/SSVEP Brain -Computer Interface Systems.

[16] Liu, Y, Wang, S & Hu,M. 2016. A Self -Paced P300 Healthcare Brain -Computer Interface System with SSVEP -Based Switching Control and Kernel FDA + SVM -Based Detector.

Published

2018-12-18

How to Cite

[1]
F. A. Cabezas and F. R. Cabezas Soldevilla, “Classification of EEG signals using LDA and QDA applied to a Brain Interface - Computer based on P300”, TECNIA, vol. 28, no. 2, Dec. 2018.

Issue

Section

Processing of Signals and Images