A General proof of the good definition of the Augmented Lagrangian method
DOI:
https://doi.org/10.21754/tecnia.v13i1.487Abstract
This paper presents a proof of the unicity of the sequence of multipliers generated by the Aumented Lagrangean Method with Penalties P, e P. This unicity has been tested along the last 25 years by the use of the equivalence relationship existing between the Aunented Lagrangean and Proximal Point Methods Various researchers such as
Rockafellar [10], Iusem 6l and Gonzaga & Castillo [2] tested this equivalence and the consequent unicity of the multipliers sequence generated by the Aumented Lagrangean Method in particular cases. The proof we are presenting includes all these cases; it is outstanding for being direct and not to use the above equivalence relation.
Downloads
References
[1] Bertsekas, D. P., "Constrained Optimization and Lagrange Multiplier Method", Academic Press, New York, 1982.
[2] . Gonzaga, C. y Castillo, R., "Métodos de Lagrangeano Aumentado usando Penalidades Generalizadas para Programação não linear" Tesis, COPPE, UFRJ, 1998.
[3] . Hiriart - Urruty J.- Baptiste y Lemaréchal, C., "Convex Analysis and Minimization Algorithms I, I ed." New York, Springer Verlag, 1993.
[4] . Hiriart- Urruty J.- Baptiste y Lemaréchal, C., "Convex Analysis and Minimization Algorithms II, 1 ed." New York, Springer Verlag, 1993.
[5] . Hestenes, M., "Multiplier and Gradient Methods", Jota, vol 4, pp.303-320, 1969.
[6] . Iusem, A., "Métodos de Ponto Proximal em Otimizacao, 20°" Coloquio Brasileiro de matemática, IMPA, R., J., Brasil, 1995.
[7] . Martinet, B., "Regularisation D'inequations variationnelle par approximations successives", Revue Francaise de Informatiqué et Recherche Opérationelle 2, pp. 154-159, 1970.
[8] . Powell, M., "A method for nonlinear constraints in minimizations problems", Ed., Academic Press, N.Y., pp. 283-298, 1969.
[9] . Rezza, Y., "Una prueba general de la buena definición del Método Lagrangeano Aumentado", 2003.
[10] . Rockafellar R. T., "Augmented Lagrangians and applications of the proximal point algorithm in convex programming', Mathematics of Operations Research, vol. 1, pp. 97-116, 1976.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2003 TECNIA
This work is licensed under a Creative Commons Attribution 4.0 International License.