A uniqueness test regarding the sequence of multipliers generated by the Augmented Lagrangian Method

Authors

  • Yna Consuelo Rezza Espinoza Facultad de Ingeniería Económica y Ciencias Sociales, Universidad Nacional de Ingeniería, Lima - Perú

DOI:

https://doi.org/10.21754/tecnia.v13i1.478

Abstract

This paper presents a proof of the unicity of the sequence of multipliers generated by the Aumented Lagrangean Method with Penalties P, EP. This unicity has been
tested along the last 25 years by the use of the equivalence relationship existing between the Aumented Lagrangean and Proximal Point Methods Various researchers such as
Rockafellar [10]. Iusem [6] and Gonzaga & Castillo [2] tested this equivalence and the consequent unicity of the multipliers sequence generated by the Aumented
Lagrangean Method in particular cases. The proof we are presenting includes all these cases; it is outstanding for being direct and not to use the above equivalence relation.

Downloads

Download data is not yet available.

References

[1] Bertsekas, D. P., "Constrained Optimization and Lagrange Multiplier Method". Academic Press. New York, 1982.

[2] Gonzaga, C. y Castillo, R.. "Métodos de Lagrangeano Aumentado usando Penalidades Generalizadas para Programação não linear" Tesis, COPPE, UFRJ, 1998.

[3] Hiriart- Urruty J.- Baptiste y Lemaréchal, C., "Convex Analysis and Minimization Algorithms I, I ed." New York, Springer Verlag. 1993.

[4] Hiriart- Urruty J.- Baptiste y Lemaréchal, C., "Convex Analysis and Minimization Algorithms II, I ed." New York, Springer Verlag. 1993.

[5] Hestenes, M., "Multiplier and Gradient Methods", Jota, vol 4, pp.303-320, 1969.

[6] Iusem, A., “Métodos de Ponto Proximal em Otimizacao, 20°" Coloquio Brasileiro de matemática, IMPA, R., J., Brasil, 1995.

[7] Martinet, B. "Regularisation D'inequations variationnelle par approximations successives Revue Francaise de Informatiqué et Recherche Opérationelle 2, pp. 154-159, 1970.

[8] Powell, M., A method for nonlinear constraints in minimizations problems", Ed., Academic Press, N.Y., pp. 283-298, 1969,

[9] Rezza, Y., "Una prueba general de la buena definición del Método Lagrangeano Aumentado", 2003.

[10] Rockafellar R. T., "Augmented Lagrangians and applications of the proximal point algorithm in convex programming'. Mathematics of Operations Research, vol. 1. pp. 97-116, 1976,

Published

2018-09-19

How to Cite

[1]
Y. C. Rezza Espinoza, “A uniqueness test regarding the sequence of multipliers generated by the Augmented Lagrangian Method”, TECNIA, vol. 13, no. 1, pp. 3–7, Sep. 2018.

Issue

Section

Articles

Most read articles by the same author(s)