ARIMA stochastic models for prediction of energy variables
DOI:
https://doi.org/10.21754/tecnia.v9i1.443Keywords:
Stochastic, models, univariate time series analysis, autoregressive integrated moving average, energy variables, Energy planningAbstract
ARIMA univariate time series analysis were used for modeling and forecasting future energy production and consumption in Asturias-Spain. Initially, each series was recorder monthly from 1980 to 1996. These data include trend and seasonal variations wich allow the use of ARIMA (AutoRegressive Integrated Moving Average) univariate models for predictions of future behavioral patterns. The optimum forecasting models obtained for each energetic series, have a satisfactory degree of statistical validity (Low approximation errors) and are suitable for use as reference inputs in the Regional Energetic Plan of Asturias.
Downloads
References
[1] Box, G.E.P. and Jenkins, G.M. Time Series Analysis: Forecasting and Control, Holden Day, San Francisco (1976).
[2] Gonzáles Chávez, S. Análisis Histórico y Perspectiva del Carbón para Uso Energético en Asturias, Universidad de Oviedo, España (1997).
[3] Gonzáles Chávez, S. El carbón como Fuente de Energía y su Influencia en los Balances Energético de Asturias, Universidad de Oviedo, España (1995).
[4] Jenkins, G.M. Practical Experiences with Modelling and Forecasting time Series, Gwilym Jenkins and Partners, San Francisco (1979).
[5] Parzen, E. Procesos Estocásticos, Paraninfo, Madrid (1972).
[6] Statistical Package for Social Sciences, SPSS Trends, Chicago (1996).
[7] Statistical Graphics Systems, STATGRAPHICS User Guide. Cambridge (1993).
[8] Scientific Computing Associates, SCA Reference Manual for Forescasting and Time Series Analysis. Chicago (1996).
[9] Vandaele, W. Applied Time Series and Box-Jenkins Models, A. Press, N.Y. (1983).
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 1999 TECNIA
This work is licensed under a Creative Commons Attribution 4.0 International License.