Optimal agglomerate configurations and strain dependence of activation energies on Cu(001) surfaces
DOI:
https://doi.org/10.21754/tecnia.v16i1.403Keywords:
genetic algorithms, activation energies, NEB methodAbstract
One of the most important aspects in the epitaxial growth of thin films is the mobility of adatoms and small agglomerates. As this mobility is related to activation energies, many studies are focused on calculating and determining the role of these energies. For example, previous studies showed that activation energies can be easily modified using deformation fields. However, many aspects are still not very clear. In this work we employed Genetic Algorithms to calculate optimal configurations of aggregates on Cu(001) surfaces modeled with the embedded atom method (EAM). The optimal configurations obtained showed no dependence on the applied strain. Additionally, we studied the dependence of the hopping and exchange activation energies on the applied strain level. It was observed that the hopping shows a clear dependence with respect to the biaxial tension or compression, in contrast to the exchange, whose dependence is more complex.
Downloads
References
[2] Ala-Nissila, T., Ferrando, R., Ying, S.C.,“Collective and single particle diffusion on surfaces”, Adv. Phys. 51 (3) (2002), pp. 949.
[3] Wadley, H.N.G, Zhou, X., Johnson, R. A,Neurock, M., “Mechanisms, models and methods of vapor deposition”, Prog. Mater. Sci. 48 (2001), pp. 329.
[4] Sabiryanov, R.F., Larsson, M. L, Cho, K.J., Nix, W. D., Clemens, B. M., “Surface diffusion and growth of patterned nanostructures on strained surfaces”, Phys.Rev. B 67 (2003) 125412.
[5] Xiao, W., Greaney, P. A., Chrzan, D. C.,“Adatom transport on strained Cu(001):Surface crowdions”, Phys. Rev. Lett. 90(2003) 156102.
[6] Xiao, W., Greaney, P. A., Chrzan, D. C.,“Pt adatom diffusion on strained Pt(001)”,Phys. Rev. B 70 (2004) 033402.
[7] Wang, Y. X., Pan, Z. Y., Li, Z. J., Wei, Q.,Zang, L. K., Zhang, Z. X., “Effect of tensile strain on adatom diffusion on Cu(111) surface” Surf. Sci. 545 (2003), pp. 137.
[8] Merikoski, J., Vattulainen, L, Heinonen,J., Ala-Nissila, T., “Effect of kinks and concerted diffusion mechanisms on mass transport and growth on stepped metal surfaces”, Surf. Sci. 387 (1997), pp. 167.
[9] Huang, H., “Adatom diffusion along and down island steps”, J. Computer-aided Mater. Design 9 (2002), pp. 75.
[10] Huang, H., Wang, J., “Surface kinetics:Step-facet barriers”, Appl. Phys. Lett. 83 (23) (2003) 4752.
[11] Wang, J., Huang, H., Cale, T. S.,“Diffusion barriers on Cu surfaces and near steps”, Modelling Simul. Mater. Sci. Eng. 12 (2004), pp. 1209.
[12] Trushin, O. S., Salo, P., Alatalo, M., AlaNissila, T., “Atomic mechanisms of cluster diffusion on metal fec (100) surfaces”, Surf.Sci. 482-485 (2001), pp. 365.
[13] Bockstedte, M., Liu, S. J., Pankratov, O.,Woo, C. H., Huang, H., “Diffusion of clusters down (111) aluminum islands”,Comput. Mater. Sci. 23 (2002), pp. 85.
[14] Henkelman, G., Jónsson, H., “Multiple time scale simulations of metal crystal growth reveal the importance of multiatom surface processes”, Phys. Rev. Lett. 90 (2003) 116101.
[15] Foiles, S. M., Baskes, M.I., Daw, MLS..,“Embedded-atom-method functions for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys”, Phys. Rev. B 33 (1986) 7983.
[16] Plimpton, S.,Sandia Laboratories,http://www.cs.sandia.gov/-sjplimp/
[17] Li, J., “AtomEye: an efficient atomistic configuration viewer”, Modelling Simul. Mater. Sci. Eng. 11 (2003), pp. 173.
[18] Goldberg, D. E., “Genetic algorithms in search, optimization and machine learning”, Addison-Wesley, Cambridge,MA, 1989.
[19] Darby, S., Mortimer-Jones, T. V.,Johnston, R. L., Roberts, C., “Theoretical study of Cu-Au nanoalloy clusters using a genetic algorithm”, J. Chem. Phys. 116 (2002) 1536.
[20] Charbonneau, P., Knapp, B., High Altitude Observatory,http://www.hao.ucar.edu/Public/models/pikai
a/pikaia.html.
[21] Jonsson, H., Mills, G., Jacobsen, K. W.,“Nudged elastic band method for finding minimum energy paths of transitions”, in Classical and Quantum Dynamics in Condensed Phase Simulations, edited by B. J. Berne, G. Ciccotti, and D. F. Coker (World Scientific, Singapore, 1998), pp. 385.
[22] Henkelman, G., Uberuaga, B.P., Jénsson,H., “A climbing image nudged elastic band method for finding saddle points and minimum energy paths”, J. Chem. Phys. 113 (2000) 9901.
[23] Boisvert, G., Lewis, L.J., “Self-diffusion of adatoms, dimers, and vacancies on Cu(100)”,Phys. Rev. B 56 (1997) 7643.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2006 TECNIA
This work is licensed under a Creative Commons Attribution 4.0 International License.