Control of a second order system based on neural networks

Authors

  • Mario Borja Facultad de Ingeniería Mecánica, Universidad Nacional de Ingeniería. Lima, Perú.
  • Rudolph Molero Facultad de Ingeniería Mecánica, Universidad Nacional de Ingeniería. Lima, Perú.
  • Nilton Cuellar Facultad de Ingeniería Mecánica, Universidad Nacional de Ingeniería. Lima, Perú.
  • Martin Montes Facultad de Ingeniería Mecánica, Universidad Nacional de Ingeniería. Lima, Perú.
  • Drago Separovich Facultad de Ingeniería Mecánica, Universidad Nacional de Ingeniería. Lima, Perú.

DOI:

https://doi.org/10.21754/tecnia.v19i2.355

Keywords:

neurocontroller, control with neural networks, booster neurocontroller, neural controller

Abstract

The present work shows the simulation and implementation of a "Neurocontroller" in a second order plant. The neural controller, also known as Neurocontroller, was implemented with a multilayer network, where the backpropagation of the error was developed through the "Backprogation" algorithm. The multilayer network, composed of a hidden layer and an output layer, was first simulated in Matlab to get the variation parameters, then it was simulated in Visual C++ to achieve the optimization. The architecture of this multilayer network was varied many times until reaching an optimal form that will be shown as the final architecture. Next, the simulation was done in LabVIEW 8.4, corroborating the simulations in Visual C++. Finally, the neural controller developed in LabVIEW was tested in real time, showing gratifying results and verifying its effectiveness despite simultaneous changes in the parameters.

Downloads

Download data is not yet available.

References

[1] Valverde, R., Gachet, D., Salichs, M. A., "Dynamic systems identification using rbf neural networks", área de ingeniería de sistemas y automática Universidad Carlos III de Madrid, Spain, pp 1-10. España, 1999.

[2] Önder Efe, M., Kaynak, O., Yu, X., Wilamowski, B. M., "Sliding mode control of nonlinear systems using gaussian radial basis function neural networks", pp 1-6. USA 2001.

[3] Valverde, R., "Neurocontrol of continuous processes through reinforcement learning". Universidad Carlos III de Madrid. C/butarque, 15. 28911, Leganés, pp 1-5. España, 1998.

[4] Valverde, R., "Control de sistemas mediante redes neuronales". Aprendizaje por refuerzo, Universidad Carlos III de Madrid, Tesis doctoral, pp 8-16. España, 1999.

[5] Werbos, P. J., "Neural networks applications". 1997 iop publishing ltd and Oxford University

Press, Handbook of Neural Computation release 97/1 f1.9:1-f1.9:10, pp 1 -10. USA 1997.

Published

2008-12-01

How to Cite

[1]
M. Borja, R. Molero, N. Cuellar, M. Montes, and D. Separovich, “Control of a second order system based on neural networks”, TECNIA, vol. 19, no. 2, pp. 14–22, Dec. 2008.

Issue

Section

Articles

Most read articles by the same author(s)