Numerical simulation process and HIV infection control in the action antiretrovials
DOI:
https://doi.org/10.21754/tecnia.v25i1.25Keywords:
antiretrovial therapy, nonlinear dynamic system, Runge Kutta method of fourth order, IHV mathematical modelingAbstract
This paper considers the proposal, development and numerical simulation of a system that models the behavior of the treatment of HIV-1 using antiretrovirals. The system defined for three dependent variables of the variable t, denoted by X(t)=(x1 (t), x2 (t), x3 (t)) represent the amount of T Lymphocytes "Helpers" (CD4), number of Cytotoxic T Lymphocytes (CD8) Viral load and infection process of HIV-1 at any time t, respectively. The assembly consists of a Nonlinear Ordinary Differential Equations system whose existential domain represents time system evaluation process of infection and viral clearance in a patient with HIV-1. This set of states of Nonlinear Dynamic System, associated with the initial value condition is called Cauchy problem. There are few studies related to the solution of this system, found some of the study are reduced to two variables and others without obtaining the explicit solution. Equivalence of the solution of the system linearization, phase diagram, qualitative stability, existence and uniqueness of analytic solution, where test: In this paper contributes to the study of the system for three variables, and qualitative and quantitative analysis comprising nonlinear the linearized system. The equivalence is based on Theorem Grobman - Hartman and explicit solution by the Runge Kutta 4th order, thus the model results and whose convergence is obtained is, is guaranteed by the consistency and stability of the numerical scheme.
Downloads
References
[1] Freeman, Scott. “Biological Science. Upper Saddle River”, NJ: Prentice Hall,(2002).
[2] Campos, S. S Ge, Z. Tian., T. H. Lee, "Nonlinear Control of a Dynamic Model of HIV-1", IEEE transactions, Vol. 52, No. 3, pp. 353-361, Marzo(2005).
[3] Campello de Sousa, F. M., “Modeling the Dynamics of HIV-1 and CD4 and CD8 Lymphocytes”, IEEE Engineering in Medicine and Biology, pp.21-24, January/February (1999).
[4] Soto Ramírez, L. E., “et al. Guía de manejo antirretroviral de las personas con VIH”. cuarta edición. México(2009).
[5] Dirección General de epidemiológica situación del VHI/SIDA en el Perú. “Boletín Epidemológico mensual”. Marzo(2012).
[6] Chertorivski Woldenberg, S., “et al. Manual de procedimientos Estandarizados para la Vigilancia Epideomológica del VIH-SIDA”. Dirección General de Epidemiología. México (2009).
[7] Benazic, R., “Tópicos de Ecuaciones Diferenciales Ordinarias”.(2007).
[8] Mantilla, I., Masgo, J. C. “Teorema de Grobman-Hartman en Espacios de Banach”, Seminario de Matemática Pura y Aplicada I, Facultad de Ciencias, Universidad Nacional de Ingeniería(2012).
[9] Mantilla, I., Masgo, J. C., “Comportamiento de Especies en Competencia, modelo Matemático. Seminario de Matemática Pura y Aplicada II, Facultad de Ciencias, Universidad Nacional de Ingeniería(2012).
[10] Burden, Richard L., Douglas Faires,J.,Análisis Numérico (2001).
[11] Nakamura, S., “Análisis numérico y visualización grafica con MATLAB”.(1997).
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2015 TECNIA
This work is licensed under a Creative Commons Attribution 4.0 International License.