Performance evaluation of an optimized reciprocating shaker with PID control and Arduino technology: driving circular economy in laboratory equipment

Authors

  • Ana Sofía Achuy Flores Laboratorio BIOMET, Facultad de Ciencias, Universidad Nacional de Ingeniería, Lima, Perú https://orcid.org/0009-0009-0474-967X
  • Luis Fernando Aiquipa Moreno Laboratorio BIOMET, Facultad de Ciencias, Universidad Nacional de Ingeniería, Lima, Perú https://orcid.org/0000-0002-5029-8787
  • Marco Antonio Rodríguez Adriano Laboratorio BIOMET, Facultad de Ciencias, Universidad Nacional de Ingeniería, Lima, Perú https://orcid.org/0009-0005-9684-5749
  • Miguel Ángel Tarazona Tocto Laboratorio BIOMET, Facultad de Ciencias, Universidad Nacional de Ingeniería, Lima, Perú https://orcid.org/0009-0006-0315-1324
  • Roxana Yesenia Pastrana Alta Laboratorio BIOMET, Facultad de Ciencias, Universidad Nacional de Ingeniería, Lima, Perú

DOI:

https://doi.org/10.21754/tecnia.v34i2.2278

Keywords:

PID control, Arduino, Circular economy, Reciprocating shaker, Open hardware technology

Abstract

The COVID-19 pandemic has accelerated the transition to virtual education and self-directed learning, highlighting the need for practical and affordable educational tools. This study addresses the remanufacturing of an old reciprocating shaker using a PID control system based on the Ziegler-Nichols method and Arduino technology. The¡ equipment was evaluated under various load and speed conditions, achieving precise agitation control with a minimum percentage error of 3%. The results demonstrate the effectiveness of PID control in stabilizing motor speed within the range of 150 to 250 RPM, with an average stabilization time of 2 seconds. Additionally, electrical measurements validated the efficiency of the alternating current regulator, while the reuse of components underscores the viability of integrating circular economy practices into education. This research offers an economically and environmentally sustainable solution for the manufacturing of laboratory equipment, fostering innovation in the teaching of experimental sciences.

Downloads

Download data is not yet available.

References

C. W. Babbitt, S. Althaf, F. Cruz Rios, M. M. Bilec, and T. E. Graedel, “The role of design in circular economy solutions for critical materials,” One Earth, vol. 4, no. 3, pp. 353–362, 2021, doi: 10.1016/j.oneear.2021.02.014.

L. F. A. Moreno, A. G. G. Vasquez, E. C. Pastrana, and R. Y. Pastrana, “Design, development, and implementation of 3d-printed polylactic acid centrifuge rotors for laboratory-scale applications,” Quim Nova, vol. 45, no. 10, 2022, doi: 10.21577/0100-4042.20170936.

M. J. Mnati, R. F. Chisab, A. M. Al-Rawi, A. H. Ali, and A. Van den Bossche, “An open-source non-contact thermometer using low-cost electronic components,” HardwareX, vol. 9, Apr. 2021, doi: 10.1016/j.ohx.2021.e00183.

G. N. Meloni, “Building a microcontroller based potentiostat: A inexpensive and versatile platform for teaching electrochemistry and instrumentation,” J Chem Educ, vol. 93, no. 7, pp. 1320–1322, Jul. 2016, doi: 10.1021/acs.jchemed.5b00961.

A. Qutieshat, R. Aouididi, and R. Arfaoui, “Design and Construction of a Low-Cost Arduino-Based pH Sensor for the Visually Impaired Using Universal pH Paper,” J Chem Educ, vol. 96, no. 10, pp. 2333–2338, Oct. 2019, doi: 10.1021/acs.jchemed.9b00450.

L. R. da Silva, R. C. C. Flesch, and J. E. Normey-Rico, “Analysis of Anti-windup Techniques in PID Control of Processes with Measurement Noise ⁎,” in IFAC-PapersOnLine, Elsevier B.V., Jan. 2018, pp. 948–953. doi: 10.1016/j.ifacol.2018.06.100.

E. R. Arboleda, “Design, construction, and evaluation of transformer-based orbital shaker for coffee micropropagation,” Journal of Mechatronics, Electrical Power, and Vehicular Technology, vol. 13, no. 2, pp. 147–156, 2022, doi: 10.14203/j.mev.2022.v13.147-156.

T. A. Dourado, L. F. S. da Silva, and M. de A. Marinho, “Performance of a reciprocal shaker in mechanical dispersion of soil samples for particle-size analysis,” Rev Bras Cienc Solo, vol. 36, no. 4, pp. 1131–1148, 2012, doi: 10.1590/s0100-06832012000400008.

M. S. D. P. Rahman, S. Zahara, and M. Nurjanah, “Design and build of shaking table prototype as short-period seismometer calibrator based on microcontroller,” in Journal of Physics: Conference Series, Institute of Physics Publishing, Jan. 2020. doi: 10.1088/1742-6596/1434/1/012007.

J. Bedoya and R. Hoyos, “Afecto de la relación agitación-agitación sobre el crecimiento celular y la producción de Azadiractina en cultivos celulares de Azadirachta indica a. juss,” Rev.Fac.Nal.Agr.Medellín, vol. 63, no. 1, pp. 5293–5305, 2008. [En línea]. Disponible:

https://repositorio.unal.edu.co/handle/unal/37111

P. B. and D. V. Mikulas Huba, Stefan Chamraz, “Making the PI and PID Controller Tuning Inspired by Ziegler and Nichols Precise and Reliable,” vol. 21, no. 6157, pp. 1–26, 2021. https://doi.org/10.3390/s21186157.

S. Gubsky, “Development of Low-Cost Arduino-Based Equipment for Analytical and Educational Applications” presentado en 2nd International Electronic Conference on Chemical Sensors and Analytical Chemistry, 16,” 2023, doi: 10.3390/CSAC2023.

R. P. Borase, D. K. Maghade, S. Y. Sondkar, y S. N. Pawar, “A review of PID control, tuning methods and applications,” Int J Dyn Control, vol. 9, no. 2, pp. 818–827, 2021, doi: 10.1007/s40435-020-00665-4.

A. Debnath, T. O. Olowu, S. Roy, I. Parvez, and A. Sarwat, “Particle Swarm Optimization-based PID Controller Design for DC-DC Buck Converter,” 2021 North American Power Symposium, NAPS 2021, 2021, doi: 10.1109/NAPS52732.2021.9654737.

A. Valade, P. Acco, P. Grabolosa, and J. Y. Fourniols, “A Study about Kalman Filters Applied to Embedded Sensors,” Sensors 2017, vol. 17, no. 12, p. 2810, Dec. 2017, doi: 10.3390/S17122810.

R. P. Borase, D. K. Maghade, S. Y. Sondkar, y S. N. Pawar, “A review of PID control, tuning methods and applications,” Jun. 01, 2021, Springer Science and Business Media Deutschland GmbH. doi: 10.1007/s40435-020-00665-4.

S. N. Pawar, R. P. Borase, and S. P. Jadhav, “Design and Implementation of IMC based PID Control using Arduino for Process Control Application,” 2020 International Conference on Industry 4.0 Technology, I4Tech 2020, pp. 29–33, Feb. 2020, doi: 10.1109/I4TECH48345.2020.9102707.

A. Valade, P. Acco, P. Grabolosa, and J. Y. Fourniols, “A study about kalman filters applied to embedded sensors,” Sensors (Switzerland), vol. 17, no. 12, pp. 1–18, 2017, doi: 10.3390/s17122810.

Published

2025-01-02

How to Cite

[1]
A. S. Achuy Flores, L. F. Aiquipa Moreno, M. A. Rodríguez Adriano, M. Ángel Tarazona Tocto, and R. Y. Pastrana Alta, “Performance evaluation of an optimized reciprocating shaker with PID control and Arduino technology: driving circular economy in laboratory equipment”, TECNIA, vol. 34, no. 2, pp. 62–72, Jan. 2025.

Issue

Section

Ingeniería Física