Evaluation of starches as Flocculants for the removal of turbidity in surface water

Authors

DOI:

https://doi.org/10.21754/tecnia.v33i2.1907

Keywords:

floculante, almidón, Colocasia Esculenta, Turbiedad, aguas superficiales

Abstract

The objective of this research was to evaluate the flocculant power of three types of starches, from white and yellow potato (Solanum tuberosum) and pituca (Colocasia esculenta) to remove turbidity in surface water. For this purpose, starch was extracted by mashing potatoes with a water/mass ratio of 1:4 and pituca with a ratio of 1:1, then sedimented and dried at 45 °C for 24 hours. Flocculant was prepared by dissolving 10 grams of starch in 250 ml of hot water at 60 °C and then boiled. Evaluation of the flocculant involved aluminum sulfate coagulation of the surface water, adjusting the pH to 9, and then coagulant was dosed until the pH was lowered to 6.9. The flocculant power of the starches was evaluated at doses of 0.3 ml and 0.5 ml per liter of water to be treated. The physicochemical parameters evaluated were measured before and after the addition of the starch flocculants. The yellow potato, white potato and pituca starches significantly improved the turbidity removal efficiency in the water treatment, exceeding 95%. However, biochemical oxygen demand (BOD) increased, indicating a higher organic load. Sludge generation also increased with the addition of organic flocculants. Increasing the starch dose beyond 0.3 ml did not improve turbidity removal, suggesting that this dose is an "optimal dose" for maximizing turbidity reduction efficiency.

Downloads

Download data is not yet available.

References

[1] Q. W. Lin et al., “Impacts of residual aluminum from aluminate flocculant on the morphological and physiological characteristics of Vallisneria natans and Hydrilla verticillata,” Ecotoxicol Environ Saf, vol. 145, pp. 266–273, Nov. 2017, doi: 10.1016/J.ECOENV.2017.07.037.
[2] I. Krupińska, “Aluminium Drinking Water Treatment Residuals and Their Toxic Impact on Human Health,” Molecules 2020, Vol. 25, Page 641, vol. 25, no. 3, p. 641, Feb. 2020, doi: 10.3390/MOLECULES25030641.
[3] H. Xu, D. Zhang, Z. Xu, Y. Liu, R. Jiao, and D. Wang, “Study on the effects of organic matter characteristics on the residual aluminum and flocs in coagulation processes,” Journal of Environmental Sciences, vol. 63, pp. 307–317, Jan. 2018, doi: 10.1016/J.JES.2016.11.020.
[4] P. Maćczak, H. Kaczmarek, and M. Ziegler-Borowska, “Recent achievements in polymer bio-based flocculants for water treatment,” Materials, vol. 13, no. 18, Sep. 2020, doi: 10.3390/MA13183951/MATERIALS_13_03951_PDF.PDF.
[5] X. Jiang et al., “Biopolymer-based flocculants: a review of recent technologies,” Environmental Science and Pollution Research, vol. 28, no. 34, pp. 46934–46963, Sep. 2021, doi: 10.1007/S11356-021-15299-Y.
[6] J. Chen, A. E. Kazzaz, N. AlipoorMazandarani, Z. H. Feizi, and P. Fatehi, “Production of flocculants, adsorbents, and dispersants from lignin,” Molecules, vol. 23, no. 4, 2018, doi: 10.3390/MOLECULES23040868/MOLECULES_23_00868_PDF.PDF.
[7] B. Bolto and J. Gregory, “Organic polyelectrolytes in water treatment,” Water Res, vol. 41, no. 11, pp. 2301–2324, Jun. 2007, doi: 10.1016/J.WATRES.2007.03.012.
[8] H. Wei, J. Ren, A. Li, and H. Yang, “Sludge dewaterability of a starch-based flocculant and its combined usage with ferric chloride,” Chemical Engineering Journal, vol. 349, pp. 737–747, Oct. 2018, doi: 10.1016/J.CEJ.2018.05.151.
[9] C. A. Ferraz, R. L. S. Fontes, G. C. Fontes-Sant’Ana, V. Calado, E. O. López, and M. H. M. Rocha-Leão, “Extraction, Modification, and Chemical, Thermal and Morphological Characterization of Starch From the Agro-Industrial Residue of Mango (Mangifera indica L) var. Ubá,” Starch - Stärke, vol. 71, no. 1–2, p. 1800023, Jan. 2019, doi: 10.1002/STAR.201800023.
[10] M. Prabhu et al., “Starch from the sea: The green macroalga Ulva ohnoi as a potential source for sustainable starch production in the marine biorefinery,” Algal Res, vol. 37, pp. 215–227, Jan. 2019, doi: 10.1016/J.ALGAL.2018.11.007.
[11] A. B. Altemimi, “Extraction and Optimization of Potato Starch and Its Application as a Stabilizer in Yogurt Manufacturing,” Foods 2018, Vol. 7, Page 14, vol. 7, no. 2, p. 14, Jan. 2018, doi: 10.3390/FOODS7020014.
[12] C. O. Bernardo, J. L. R. Ascheri, D. W. H. Chávez, and C. W. P. Carvalho, “Ultrasound Assisted Extraction of Yam (Dioscorea bulbífera) Starch: Effect on Morphology and Functional Properties,” Starch - Stärke, vol. 70, no. 5–6, p. 1700185, May 2018, doi: 10.1002/STAR.201700185.
[13] A. L. Acosta-Bastar and J. R. Hernández-Barajas, “Dinámica de fluidos computacional del proceso de coagulación-floculación empleando almidón de malanga como floculante para potabilización de agua,” Revista Mesoamericana de Investigación, vol. 1, no. 1, pp. 40–46, Dec. 2021, Accessed: Jul. 23, 2023. [Online]. Available: https://rmi.unach.mx/index.php/revistacientifica/article/view/10
[14] P. D. Quino-Quispe, “Evaluación de aguas residuales bajo el tratamiento a diferentes temperaturas de coagulación - floculación con semillas de durazno (Prunus pérsica), tuna (Opuntia ficus indica) y cáscara de papa (Solanum tuberosum) del rio Jillusaya,” 2019.
[15] K. Anastasakis, D. Kalderis, and E. Diamadopoulos, “Flocculation behavior of mallow and okra mucilage in treating wastewater,” Desalination, vol. 249, no. 2, pp. 786–791, Dec. 2009, doi: 10.1016/J.DESAL.2008.09.013.
[16] J. Duan and J. Gregory, “Coagulation by hydrolysing metal salts,” Adv Colloid Interface Sci, vol. 100–102, no. SUPPL., pp. 475–502, Feb. 2003, doi: 10.1016/S0001-8686(02)00067-2.
[17] S. E. Aguirre, N. V. Piraneque, and R. K. Cruz, “Sustancias Naturales: Alternativa para el Tratamiento de Agua del Río Magdalena en Palermo, Colombia,” Información tecnológica, vol. 29, no. 3, pp. 59–70, Jun. 2018, doi: 10.4067/S0718-07642018000300059.
[18] S. Srichuwong, T. C. Sunarti, T. Mishima, N. Isono, and M. Hisamatsu, “Starches from different botanical sources II: Contribution of starch structure to swelling and pasting properties,” Carbohydr Polym, vol. 62, no. 1, pp. 25–34, Oct. 2005, doi: 10.1016/J.CARBPOL.2005.07.003.
[19] M. Arnaldos et al., “From the affinity constant to the half-saturation index: Understanding conventional modeling concepts in novel wastewater treatment processes,” Water Res, vol. 70, pp. 458–470, Mar. 2015, doi: 10.1016/J.WATRES.2014.11.046.
[20] M. J. Jivan, M. Yarmand, and A. Madadlou, “Preparation of cold water-soluble potato starch and its characterization,” J Food Sci Technol, vol. 51, no. 3, pp. 601–605, Mar. 2014, doi: 10.1007/S13197-013-1200-Y/METRICS.
[21] R. Verma et al., “Physicochemical and functional properties of gamma irradiated buckwheat and potato starch,” Radiation Physics and Chemistry, vol. 144, pp. 37–42, Mar. 2018, doi: 10.1016/J.RADPHYSCHEM.2017.11.009.
[22] M. Herrera, “Evaluación del almidón de papa como floculante para el tratamiento de aguas domésticas,” LimenTech, Ciencia y Tecnología Alimentaria, vol. 13, no. 2, pp. 123–135, 2016.
[23] L. Yang, Y. Xia, S. A. Junejo, and Y. Zhou, “Composition, structure and physicochemical properties of three coloured potato starches,” Int J Food Sci Technol, vol. 53, no. 10, pp. 2325–2334, Oct. 2018, doi: 10.1111/IJFS.13824.
[24] N. Haleem et al., “Flocculation of livestock wastewater using cationic starch prepared from potato peels,” Environ Sci (Camb), vol. 9, no. 6, pp. 1690–1700, Jun. 2023, doi: 10.1039/D2EW00794K.

Published

2024-04-05

How to Cite

[1]
A. F. Cerna Cueva, “Evaluation of starches as Flocculants for the removal of turbidity in surface water”, TEC, vol. 33, no. 2, Apr. 2024.

Issue

Section

Environmental engineering

Most read articles by the same author(s)