DFT Study of Electronic Properties and Chemical Reactivity in copper cluster Hexaquis (mu2-Benzoate- O,O')-hexa-copper(I)

Authors

  • Jean Chavez Serrano Laboratory of Quantum Chemistry and New Materials for Technological Innovation, National University of San Marcos. Lima Peru
  • José Miguel Díaz Laboratory of Quantum Chemistry and New Materials for Technological Innovation, National University of San Marcos. Lima Peru
  • Rocio Valentín Laboratory of Quantum Chemistry and New Materials for Technological Innovation, National University of San Marcos. Lima Peru

DOI:

https://doi.org/10.21754/tecnia.v28i1.185

Keywords:

mof, DFT, hexakis

Abstract

MOFs (Metal-Organic Frameworks), are a new class of hybrid microporous materials defined as extended networks, formed by metal ions joined by covalent bonds coordinated with polyfunctional organic ligands, forming structures in 1D, 2D and 3D. This computational study evaluates the electronic properties and chemical reactivity of a section of the metal-organic network (MOFs) for copper with carboxylate ligands (benzoate) reported in the Cambridge Structural Database (CSD) called hexaquis copper cluster (m2-Benzoate). O, O ') - hexacobre (I), in order to explain the behavior of the active sites present in its structure. The calculation was made with the program Q-Chem 4.0, which is used for accurate predictions of molecular structures, reactivities and vibrational, electronic and NMR spectra, using the graphical interface of Spartan 14 version 1.1.4 and the hybrid density functional B3LYP and the base function 6-31G *.

Downloads

Download data is not yet available.

References

[1] C. Montoro Cano, "Polímeros de coordinación poross avanzados con aplicaciones medioambientales," Tesis doctoral. Dep. Química inorgánica, Universidad de Granada, Granada, 2013 [En línea]. Disponible en: http://hdl.handle.net/10481/29965
[2] C. Serre et al., "Synthesis and catalytic properties of MIL-100(Fe), an iron(iii) carboxylate with large pores," Chem. Commun., vol. 100, no. 27, pp. 2820-2822, my. 2007. doi: 10.1039/b704325b
[3] O. M. Yaghi y H. Li, "Hydrothermal Synthesis of a Metal-Organic Framework Containing Large Rectangular Channels," J. Am. Chem. Soc., vol. 117, no. 41, pp. 10401-10402, my. 1995. doi: 10.1021/ja00146a033
[4] M. Eddaoudi y J. F. Eubank, "Insight into the Development of Metal-Organic Materials (MOMs): At Zeolite-Like Metal-Organic Frameworks (ZMOFs)", en Metal-Organic Frameworks: Design and Application, 2010, pp. 37-89. doi: 10.1002/9780470606858.ch2
[5] X. Y. Wang, L. Gan, S. W. Zhang, y S. Gao, "Perovskite-like metal formates with weak ferromagnetism and as precursors to amorphous materials," Inorg. Chem., vol. 43, no. 15, pp. 4615-4625, 2004. doi: 10.1021/ico498081
[6] J. Gonzalez García, "Química de coordinación catiónica y aniónica de nuevos poliazareceptores politópicos," Tesis doctoral. Dep. Química inorgánica, Universidad de Valéncia, Valéncia, 2013 [En línea]. Disponible en: http://roderic.uv.es/handle/10550/26299
[7] M. Fischer y M. Fröba, "Modeling the Adsorption of Small Molecules at Coordinatively Unsaturated Metal Sites: Density Functional Theory and Molecular Mechanics Approaches" en Metal-Organic Frameworks: Materials Modeling towards Engineering Applications, 2015, pp. 113-174 doi: 10.1201/b18039-4
[8] J. Toda, M. Fischer, M. Jorge, y J. R. B. Gomes, "Water adsorption on a copper formate paddlewheel model of CuBTC: A comparative MP2 and DFT study," Chem. Phys. Lett., vol. 587, pp. 7-13, sep. 2013. doi:10.1016/j.cplett.2013.09.049
[9] F. J. Devlin, J. W. Finley, P. J. Stephens, and M. J. Frisch, "Ab-Initio Calculation of Vibrational Absorption and Circular-Dichroism Spectra Using Density-Functional Force-Fields - a Comparison of Local, Nonlocal, and Hybrid Density Functionals," J. Phys. Chem., vol. 99, no. 46, pp. 16883-16902, jun. 1995. doi: 10.1021/j1000096a001
[10] H. Chermette, "Chemical reactivity indexes in density functional theory," J. Comput. Chem., vol. 20, pp. 129-154, agto. 1999. doi: 10.1002/(SICI)1096-987X(19990115)20:1<129::AID-JCC13>3.0.CO;2-A
[11] J. S. Gómez Jeria, "A New Set of Local Reactivity Indices within the Hartree - Fock - Roothaan and Density Functional Theory Frameworks," Can. Chem. Trans., vol. 1, no. 1, pp. 25-55, mzo 2013. doi:10.13179/canchemtrans.2013.01.01.0013
[12] L. R. Domingo, M. Ríos-Gutiérrez, y P. Pérez, "Applications of the conceptual density functional theory indices to organic chemistry reactivity," Molecules, vol. 21, no. 6, jun. 2016. doi: 10.3390/molecules21060748
[13] S. Figueredo López, M. Páez Meza, y F. Torres Hoyos, "Desarrollo de Los Índices De Susceptibilidad Electrofílica Y Nucleofílica," Rev. la Soc. Química del Perú, vol. 82, no. 2, pp. 232-244, jun. 2016.
[14] S. F. Figueredoa, M. S. Páeza y J.-W. Song, "Desarrollo de los índices de poder electrofílico y nucleofílico dentro del marco conceptual de la teoría del funcional de la densidad," Quim. Nova, Vol. 39, no. 7, pp. 817-824, jun. 2016 doi: 10.5935/0100-4042.20160097
[15] Spartan'14, Wavefunction, Inc. Irvine, CA

Published

2018-06-01

How to Cite

[1]
J. Chavez Serrano, J. M. Díaz, and R. Valentín, “DFT Study of Electronic Properties and Chemical Reactivity in copper cluster Hexaquis (mu2-Benzoate- O,O’)-hexa-copper(I)”, TECNIA, vol. 28, no. 1, pp. 27–36, Jun. 2018.

Issue

Section

Articles