In‐situ synthesis, characterization, antibacterial and nanotoxicological evaluation of synthetic polyvinyl chloride leather containing copper nanoparticles (PVC/NPsCU 0 )

Authors

  • Robert Salazar Laboratorio de Química Cuántica y Nuevos Materiales para la Innovación Tecnológica. Universidad Nacional Mayor de San Marcos. Lima, Perú.
  • Myshell Aquino Laboratorio de Química Cuántica y Nuevos Materiales para la Innovación Tecnológica. Universidad Nacional Mayor de San Marcos. Lima, Perú.
  • Y. Alvarez Laboratorio de Química Cuántica y Nuevos Materiales para la Innovación Tecnológica. Universidad Nacional Mayor de San Marcos. Lima, Perú.

DOI:

https://doi.org/10.21754/tecnia.v27i2.173

Keywords:

PVC, hospital‐acquired infections, nanocomposites, copper nanoparticles

Abstract

Disease transmitting microorganisms, such as bacteria, viruses and fungi, are the main causes of hospital‐acquired infections (HAI). This is the justification for the development of nanotechnology‐based new materials and, in particular, for the synthesis of antibacterial nanocomposites of the type polymer / antibacterial metal, which create surfaces with a large bacteria inhibiting activity. In the present work, antibacterial polymeric nanocomposites have been created by preparing polyvinyl chloride (PVC) from a resin emulsion as plastisol and synthesizing copper nanoparticles in‐situ within the polymer matrix. The methodology of the process includes the synthesis of a copper precursor, its dispersion by ultrasonic pulses, its stabilization and mixing with other PVC additives, in order to obtain chemical reduction during the gelation of the plastisols. Analysis of the PVC / NPsCu0 laminates by Energy Dispersive X‐ray Fluorescence (EDXRF), using the PyMca software 4.7.4, reveals that the importance of the PVC gelation time is related to the degree of reduction of ascorbic acid (AA) on Cu2 +. On the other hand, examination by Scanning Electron Microscopy (SEM) shows that the size of the NPsCu0 varies between 50 and 250 nm. Examination by X‐ray Diffraction (XRD) shows the partial polymer crystallization of PVC and the presence of Cu0. The antibacterial activity of the PVC / NPsCu0 laminates was confirmed by the disc diffusion method on Escherichia coli O157: H7; the average zone of inhibition was 9.7 mm, indicating a significant bactericidal effect on this strain. A nanotoxicological assay was carried out to evaluate the viability of the development of these polymeric nanocomposites. The cytotoxic analysis of the PVC / NPsCu0 nanocomposites in human peripheral blood cells concluded that the cytotoxic effect on healthy cells was less than 8%.

Downloads

Download data is not yet available.

References

[1] M. I. Beltran, "Los procesos de gelificación y descomposición de los plastisoles de PVC por FTIR y TG. La influencia del tipo de resina, plastificante, composición y otras variables", tesis doctoral, Universidad de Alicante, Alicante, España, 1995.

[2] A. Ogawa, M. Shimada, K. Ando, "Polyvinyl chloride plastisol composition", US 4977201 A, 1990, Dic. 11.

[3] L. Matuana, "Hybrid PVC/WOOD-reinforcement nanocomposites and Method of manufacture", WO 2008133839 Al, 2008, Nov. 6.

[4] C. Gosse, P. Daniels, T. Larson, "Plasticised polyvinyl chloride", EP 1432758 B1, 2008, Nov. 26.

[5] (2017) The LENS website. [Online]. Available: https://www.lens.org/lens/

[6] T. Ochiai, S. Ito, "Antibacterial Card", US 5962137 A, 1999, Oct. 5.

[7] J. M. Geb, G. Báhr, "Articles with antibacterial activity for use as medical or surgical aids", EP 0792654 B1, 2001, Oct. 17.

[8] D. Lee, M. Ok, D. Lim, "Adhesive sheet and manufacturing method thereof", US 7799401 B2, 2010, Sept. 21.

[9] ProCobre, "Cobre: Salud, Medio Ambiente y Nuevas Tecnologías", 2014, [En línea]. Disponible en: http://procobre.org, [accesado el 15 de mayo del 2015].

[10] A. Guzmán, R. Salazar, "Boletín de Vigilancia Tecnológica: El Cobre I+D+i", UNMSM, PERÚ, 2016 [en línea]. Disponible en: https://www.researchgate.net/publication/_Boletin_de_Vigilancia_Tecnologica_EI_Cobre_IDi_2016_UNMSM-PERU [accedido 15-Julio-2016]

[11] F. Fang Xu, J. Imlay, "Silver(I), Mercury(II), Cadmium(II), and Zinc(II) -target Exposed Enzymic Iron-Sulfur Clusters when They Toxify Escherichia coli", Appl. Environ. Microbio]. Vol. 78, no. lo, pp. 3614-3621, Feb. 2012.

[12] H. Palza, "Antimicrobial Polymers with Metal Nanoparticles", Int. J. Mol. Sci. Vol. 16, pp. 2099-2116, Jan. 2015

[13] K. Delgado Vargas, "Estudio de la obtención de compósitos con propiedades Antimicrobiales y Antifouling formados por una matriz polimérica y nanopartículas a base de cobre", tesis doctoral, Universidad de Chile, Santiago de Chile, Chile, 2013.

[14] "Síntesis y Caracterización de Carboxilatos Metálicos", G. Cerillo, [en línea], Disponible en: https://upcommons.upc.edu/bitstream/handle/2099.1/6843/Resum.pdf

[15] M. Song, Z. Zhang, "A simple way to prepare Cupric oleate capped AgI nanoparticles", Mat. Resch, Bol., Vol. 39, pp. 2273-2278, Jul. 2004.

[16] E. F. Ardiles, "Caracterización Magneto-Estructural de compósitos de Cobre (II)-carboxilatos", tesis para optar el título de Químico, Universidad de Chile, Santiago de Chile, Chile, 2010.

[17] W. Yu, H. Xie, L. Chen, "Synthesis and Characterization of Monodispersed Copper Colloids in Polar Solvents", Nanoscale Res. Lett. Vol. 4, pp. 465-470, 2009.

[18] A. Mao, M. Ding, X. Jin, X. Gu, C.Cai, C. Xin, T. Zhang, "Direct, rapid synthesis of wáter-dispersed copper naoparticles and their surface-enhanced Raman scattering properties", J. Mol. Struc., pp. 396-401, 2015.

[19] X. Chen, C. Li, L Zhang, S. Xu, Q. Zhou, Y. Zhu, x. Qu, "Main factors in preparation of antibacterial particles/PVC composite", China Particuology, Vol. 2, no. 5, pp. 226-229, 2004.

[20] L. Tamayo, M. Azócar, M. Kogan, A. Riveros, M. Páez, "Copper-polymer nanocomposites: An ezcellent and cost-effective biocide for use on antibacterial surfaces", Mater. Sci & Eng., (2016)

[21] S. Rodríguez, M. Mondaca, C. Badilla, A. Maldonado, "PVC/ Copper oxide composites and their effect on bacterial adherence", J. Chil. Chem Soc., Vol. 57, no. 2, pp. 1163-1165, 2012.

[22] A. Guzman, L Verde, J. Rengifo, "Synthesis and characterization of copper nanoparticles/polyvinyl chloride (CuNPs/PVC) nanoparticles", Proc. Mater. Sci., col. 9, pp. 298-304,2015.

[23] N. Galarce Toro, "Efecto de nanopartículas de cobre sobre la viabilidad celular en compósitos poliméricos", tesis para optar el título de Ing. Civil Química, Universidad de Chile, Santiago de Chile, Chile, 2013.

[24] D. hen, S. Sharma, A. Mudhoo, Handbook of Applications of Ultrasound Sonochemistry for Sustainability, FL, USA: CRC Press, 2012

[25] S. Guerrero, H. Veloso, "On the analysis of wide-angle X-ray diffraction curves of Poly(vinyl chloride) samples", Pol., Vol. 31, pp. 1615-1622, 1990.

[26] R. Chartoff, T. Lo, E. Ray, H. JR, R. Joon -roe, "Infrared spectral changes with crystallization in poly (vinylchloride): Correlations with X-ray and density data", J. Macr. Sci. Physics, Vol. 20, no. 3, pp. 287-303, 2006.

[27] MI NSA Manual de procedimiento para la prueba de sensibilidad antimicrobiana por el Método de Disco de Difusión, Serie de Normas Técnicas Ne3o. Disponible en: http://190.102.152.73/repositorioaps/0/4/jer/-1/manua_1%20sensibilidad.pdf, [Accedido:2o-jun-2o17].

Published

2017-12-01

How to Cite

[1]
R. Salazar, M. Aquino, and Y. Alvarez, “In‐situ synthesis, characterization, antibacterial and nanotoxicological evaluation of synthetic polyvinyl chloride leather containing copper nanoparticles (PVC/NPsCU 0 )”, TECNIA, vol. 27, no. 2, pp. 33–43, Dec. 2017.

Issue

Section

Articles