Behavior of concrete subjected to compression loads including the SRD as an absorsion energy device, using recycled tire sheets

Authors

  • Jorge Frank Tovar Rodríguez 1Facultad de Ingeniería de Minas, Geología y Civil, Universidad Nacional De San Cristóbal De Huamanga, Ayacucho, Perú
  • Francisco Javier Taipe Carbajál Facultad de Ingeniería, Universidad Nacional de San Cristóbal de Huamanga, Ayacucho, Perú https://orcid.org/0000-0001-5733-9396

DOI:

https://doi.org/10.21754/tecnia.v33i2.1583

Keywords:

Tires, Concrete, Strength, Elasticity, Energy

Abstract

In this research the lineal and nonlinear behavior of concrete was studied with the purpose of increasing the energy abortion capacity in order in can be used in common buildings for low resources communities and held in highly seismic zones. Recycled tires from Disused Tires were used to elaborate the SRD (Steel-Rubber Device) which consist of rubber layers of 5mm thickness and steel layers of 2mm thickness, with circular shape of 5cm diameter and put one on another like a “sandwich”. This device was placed inside the concrete samples. The specimens were of four types: conventional (PC, without SRD) and modified (PM, with SRD), the last ones were of three sub-types according to the number of rubber layers between steel layers (PM1, PM2 and PM3). Experimental compression tests were taken according to the standard ASTM C469 and complemented with numerical test on finite element analysis on a reliable software. Results showed that the SRD reduce the compression strength in 13% to 17% range and decrease the modulus of elasticity as well in 3.30% to 10% range, both in relation to the conventional samples. On the other hand, the SRD increased the energy dissipation capacity through a gradually damage developing and higher residual strains in the modified samples.

Downloads

Download data is not yet available.

References

H. Park y T. Eom, “Energy dissipation capacity of flexure-dominated reinforced concrete members”, presentado en 13th World Conference on Earthquake Engineering, Vancouver, B.C., Canada, 2004.

M. Valente y A. Sibai, “Rubber/crete: Mechanical properties of scrap to reuse tire-derived rubber in concrete; A review”, J. Appl. Biomater., jun. 2019, doi: 10.1177/2280800019835486

A. Siddika, Md. A. Al Mamun, R. Alyousef, Y.H. M. Amran, F. Aslani y H. Alabduljabbar, “Properties and utilizations of waste tire rubber in concrete: A review”, Constr Build Mater., vol. 224, no. 10, pp. 711-731, nov. 2019, doi: 10.1016/j.conbuildmat.2019.07.108

Nelson Flores Medina, Darío Flores Medina, F. Hernández-Olivares y M.A. Navacerrada, “Mechanical and thermal properties of concrete incorporating rubber and fibres from tyre recycling”, Constr Build Mater., vol. 144, pp. 563-573, jul. 2017, doi: 10.1016/j.conbuildmat.2017.03.196

A.R. Khaloo, M. Dehestani y P. Rahmatabadi, “Mechanical properties of concrete containing a high volume of tire-rubber particles”, J. Waste Manag., vol. 28, no. 12, pp. 2472-2482, dic. 2008, doi: 10.1016/j.wasman.2008.01.015

R. Roychand, R. J. Gravina, Y. Zhuge, X. Ma, O. Youssf y J. E. Mills, “A comprehensive review on the mechanical properties of waste tire rubber concrete”, Constr Build Mater., vol. 237, no. 117651, mar. 2020, doi: 10.1016/j.conbuildmat.2019.117651

J. Xue y M. Shinosuka, “Rubberized concrete: A green structural material with enhanced energy-dissipation capability”, Constr Build Mater., vol. 42, pp. 196 - 204, may. 2013, doi: 10.1016/j.conbuildmat.2013.01.005

A. Muñoz, M. Díaz y R. Reyna, “Estudio de aplicabilidad de un prototipo de aislador de bajo costo utilizando caucho reciclado”, tecnia, vol: 29, no. 2, pp. 65-73, ago. 2019, doi: 10.21754/tecnia.v29i2.706

H. K. Mishra, A. Igarashi y H. Matsushima, “Finite element análisis and experimental verification of the scrap tire rubber pad isolator”, Bull. Earthq. Eng., vol: 11, pp. 687-707, oct. 2012, doi: 10.1007/s10518-012-9393-4

V. L. Shulman, “Tire Recycling”, Waste., The European Tyre Recycling Association, Second Edition, chapter 26, pp. 489-515, 2019.

C. Halsband, L. Sorensen, A. M. Booth y D. Herzke, “Car Tire Crumb Rubber: Does Leaching Produce a Toxic Chemical Cocktail in Coastal Marine Systems?”, Front. Environ. Sci., vol: 8, no. 125, Jul. 2020, doi: 10.3389/fenvs.2020.00125

K. Formela, “Sustainable development of waste tires recycling technologies – recent advances, challenges and future trends”, Advanced Industrial and Engineering Polymer Research, vol: 4, no. 3, pp. 209-222, jul. 2021, doi: 10.1016/j.aiepr.2021.06.004

S. Sakai , “An international comparative study of end-of-life vehicle (ELV) recycling systems”, J. Mater. Cycles Waste Manag., vol: 16, pp. 1-20, 2014, doi: 10.1007/s10163-013-0173-2

G. Ana María, “La importancia de una regulación especial para la gestión de los neumáticos fuera de uso en el Perú”, Tesis de Master, Pontificia Universidad Católica del Perú, Lima, 2018. Disponible: http://hdl.handle.net/20.500.12404/15644

Superintendencia Nacional de los Registros Púbicos (SUNARP), “SUNARP: número de autos que circulan en el país acumula una década de crecimiento continuo”, 2019. [En línea]. Disponible: https://www.sunarp.gob.pe/PRENSA/inicio/post/2020/01/08/sunarpnumero-de-autos-que-circulan-en-el-pais-acumula-una-decada-decrecimiento-continuo

Comunidad Andina (CAN), “Proyecto por las vías de la CAN”, 2021. [En línea]. Disponible: https://www.comunidadandina.org/notas-de-prensa/comunidad-andina-lanza-proyecto-de-seguridad-vial-por-las-vidas-de-la-can/

Comunidad Andina (CAN), “CAN en cifras 2020”, 2022. [En línea]. Disponible: https://www.comunidadandina.org.

Ministerio del Ambiente, “Régimen especial de neumáticos fuera de uso (NFU)”, 2024. [En línea]. Disponible: https://www.gob.pe/institucion/minam/informes-publicaciones/2452205-regimen-especial-de-neumaticos-fuera-de-uso-nfu

Ministerio del Ambiente. (26, jul. 2021). Decreto Supremo N° 024-2021-MINAM, Decreto supremo que aprueba el Régimen Especial de Gestión de Manejo de Neumáticos Fuera de Uso. 2024. [En línea]. Disponible: https://www.gob.pe/institucion/minam/normas-legales/2039546-024-2021-minam

M. Nadal, J. Rovira, J. Díaz-Ferrero, M. Schuhmacher y J. L. Domingo, “Human exposure to environmental pollutants after a tire landfill fire in Spain: Health risks”, Environ. Int., vol: 97, pp. 37-44, oct. 2016, doi: 10.1016/j.envint.2016.10.016

S. H. Bransma, M. Brits, Q. R. Groenewoud, M. J. M. Van Velzen, P. E. G. Leonards y J. de Boer, “Chlorinated Paraffins in car Tires Recycled to Rubber Granulates and Playground Tiles”, Environ. Sci. Technol., vol. 53, no. 13, pp. 7595-7603, jun. 2019, doi: 10.1021/acs.est.9b01835

G. Rosana, P. María Josefina, I. Patricia, K. Jerónimo, A. Ricardo y S. A. María Paz, “Ecological Roofing Tiles Made With Rubber And Plastic Wastes”, Adv. Mater. Res., vol: 844, pp. 458-461, nov. 2013, doi: 10.4028/www.scientific.net/AMR.844.458

T. Khudyakova, Andrey Shmidt y Svetlana Shmidt, “Sustainable development of smart cities in the context of the implementation of the tire recycling program”, Entrepreneurship Sustain. Issues, vol: 8, no. 2, pp. 698-715, dic. 2020, [En línea]. Disponible: https://ideas.repec.org/a/ssi/jouesi/v8y2020i2p698-715.html

M. Villar – Vega y V. Silva, “Assessment of earthquake damage considering the characteristics of past events in South America”, Soil Dyn. Earthq. Eng., vol: 99, pp. 86-96, ago. 2017, doi: 10.1016/j.soildyn.2017.05.004

K. Okazaki, K. S. Pribadi, D. Kusumastuti y T. Saito, “Comparison of Current Construction Practices of Non-Engineered Buildings in Developing Countries”, presentado en 15th World Conference on Earthquake Engineering 2012 (15WCEE), Lisboa, Portugal, 2012.

Instituto Nacional de Defensa Civil (INDECI), 2017, “Escenario sísmico para Lima Metropolitana y Callao: sismo 8.8 Mw”, Instituto Nacional de Defensa Civil, Dirección de Preparación, Subdirección de Sistematización de Información sobre Escenarios de Riesgo de Desastres. [En línea]. Disponible: https://portal.indeci.gob.pe/wpcontent/uploads/2019/01/201711231521471-1.pdf

D. V. Mallick, S. E. Dritsos y D. Sonda, “Construction and Strengthening of Non – Engineered Buildings in Developing Seismic – Prone Countries”, Struct. Eng. Int., vol: 23, no. 2, pp. 225-228, feb. 2013, doi: 10.2749/101686613X13363929988610

American Society for Testing and Materials, Standard Test Method for Static Modulus of Elasticity and Poisson’s Ratio of concrete in Compression, ASTM Designation: C 469 – 02, 2002, [En línea]. Disponible: https://www.astm.org/c0469_c0469m-14.html

L. Qingfu, G. Wei y K. Yihang, “Parameter calculation and verification of concrete plastic damage model of ABAQUS”, IOP Conf. Ser.: Mater. Sci. Eng., vol. 794, no. 012036, dic. 2019, doi: 10.1088/1757-899X/794/1/012036

Computers and Structures Inc., Material Stress – Strain Curves, Walnut Creek, CA, USA, 2008.

International Federation for Structural Concrete, Model Code 2010, fib CEB – FIP, 2010.

U. Gudsoorkar y R. Bindu, “Computer simulation of hyper elastic re-treaded tire rubber with ABAQUS”, Mater. Today: Proc., vol. 43, no. Part 2, pp. 1992-2001, 2021.

Published

2024-04-05

How to Cite

[1]
J. F. Tovar Rodríguez and F. J. Taipe Carbajál, “Behavior of concrete subjected to compression loads including the SRD as an absorsion energy device, using recycled tire sheets”, TEC, vol. 33, no. 2, pp. 6–14, Apr. 2024.

Issue

Section

Civil Engineering, Geotechnics and Earthquake Resistance