BEHAVIOR OF CONCRETE SUBJECTED TO COMPRESSION LOADS INCLUDING THE SRD AS AN ABSORSION ENERGY DEVICE, USING RECYCLED TIRE SHEETS

Authors

  • Jorge Frank Tovar Rodríguez 1Facultad de Ingeniería de Minas, Geología y Civil, Universidad Nacional De San Cristóbal De Huamanga, Ayacucho, Perú
  • Francisco Javier Taipe Carbajál Facultad de Ingeniería, Universidad Nacional de San Cristóbal de Huamanga, Ayacucho, Perú https://orcid.org/0000-0001-5733-9396

DOI:

https://doi.org/10.21754/tecnia.v33i2.1583

Keywords:

Tires, Concrete, Strength, Elasticity, Energy

Abstract

In this research the lineal and nonlinear behavior of concrete was studied with the purpose of increasing the energy abortion capacity in order in can be used in common buildings for low resources communities and held in highly seismic zones. Recycled tires from Disused Tires were used to elaborate the SRD (Steel-Rubber Device) which consist of rubber layers of 5mm thickness and steel layers of 2mm thickness, with circular shape of 5cm diameter and put one on another like a “sandwich”. This device was placed inside the concrete samples. The specimens were of four types: conventional (PC, without SRD) and modified (PM, with SRD), the last ones were of three sub-types according to the number of rubber layers between steel layers (PM1, PM2 and PM3). Experimental compression tests were taken according to the standard ASTM C469 and complemented with numerical test on finite element analysis on a reliable software. Results showed that the SRD reduce the compression strength in 13% to 17% range and decrease the modulus of elasticity as well in 3.30% to 10% range, both in relation to the conventional samples. On the other hand, the SRD increased the energy dissipation capacity through a gradually damage developing and higher residual strains in the modified samples.

Downloads

Download data is not yet available.

References

[1] K. Lamprea, A. Bressy, C. Mirande-Bret, E. Caupos y M-C. Gromaire, “Alkylphenol and bisphenol A contamination of urban runoff: an evaluation of the emission potentials of various construction materials and automotive supplies”, Environ. Sci. Pollut. Res., vol. 25, pp. 21887-21900, may. 2018, doi: https://doi.org/10.1007/s11356-018-2272-z

[2] C. Halsband, L. Sorensen, A. M. Booth y D. Herzke, “Car Tire Crumb Rubber: Does Leaching Produce a Toxic Chemical Cocktail in Coastal Marine Systems?”, Front. Environ. Sci., Jul. 2020, doi: 10.3389/fenvs.2020.00125. [online]. Disponible: https://www.frontiersin.org/articles/10.3389/fenvs.2020.00125/full

[3] M. Capolupo, L. Sorensen, K. D. R. Jayasena, A. M. Booth y E. Fabbri, “Chemical composition and ecotoxicity of plastic and car tire rubber leachates to aquatic organisms”, Water Res., vol. 169, no. 115270, feb. 2020, doi: https://doi.org/10.1016/j.watres.2019.115270

[4] P. J. Kole, A. J. Lohr, F. G. A. J. Van Belleghem y Ad M. J. Ragas, “Wear and Tear of Tyres: A Stealthy Source of Microplastics in the Environment”, Int. J. Environ. Res. Public Health, vol. 14, no. 10, oct. 2017, doi: 10.3390/ijerph14101265

[5] I. Sadiktsis, C. Bergvall, C. Johansson y R. Westerholm, “Automobile Tires-A Potential Source of Highly Carcinogenic Dibenzopyrenes to the Environment”, Environ. Sci. Technol., vol. 46, no. 6, pp. 3326-3324, feb. 2012, doi: https://doi.org/10.1021/es204257d

[6] S. H. Bransma, M. Brits, Q. R. Groenewoud, M. J. M. Van Velzen, P. E. G. Leonards y J. de Boer, “Chlorinated Paraffins in car Tires Recycled to Rubber Granulates and Playground Tiles”, Environ. Sci. Technol., vol. 53, no. 13, pp. 7595-7603, jun. 2019, doi: https://doi.org/10.1021/acs.est.9b01835

[7] M. Lamour y A. Cecchin, “Recycling waste rubber tyres in construction materials and associated environmental considerations: A review”, Resour Conserv Recycl., vol. 293, no. 123368, jul. 2021, doi: https://doi.org/10.1016/j.conbuildmat.2021.123368

[8] A. Mohajerani et al., “Repurposed materials in construction: A review of low-processed scrap tires in civil engineering applications for disaster risk reduction”, Constr Build Mater., vol. 155, no. 104679, abri. 2020, doi: https://doi.org/10.1016/j.resconrec.2020.104679

[9] N. Alvarez, J. Gutierrez, G. Duran y L. Pacheco, “Experimental study of the mechanical effect of a clayey soil by adding rubber powder for geotechnical applications”, IOP Conf. Ser.: Mater. Sci. Eng., vol. 758, no. 012057, feb. 2020, doi: 10.1088/1757-899X/758/1/012057

[10] X. Shu y B. Huang, “Recycling of waste tire rubber in asphalt and Portland cement concrete: An overview”, Constr Build Mater., vol. 67, Part B, pp. 217-224, set. 2014, doi: https://doi.org/10.1016/j.conbuildmat.2013.11.027

[11] M. Valente y A. Sibai, “Rubber/crete: Mechanical properties of scrap to reuse tire-derived rubber in concrete; A review”, J. Appl. Biomater., jun. 2019, doi: https://doi.org/10.1177/2280800019835486. [online]. Disponible: https://journals.sagepub.com/home/jbf

[12] A. Siddika, Md. A. Al Mamun, R. Alyousef, Y.H. M. Amran, F. Aslani y H. Alabduljabbar, “Properties and utilizations of waste tire rubber in concrete: A review”, Constr Build Mater., vol. 224, no. 10, pp. 711-731, nov. 2019, doi: https://doi.org/10.1016/j.conbuildmat.2019.07.108

[13] Nelson Flores Medina, Darío Flores Medina, F. Hernández-Olivares y M.A. Navacerrada, “Mechanical and thermal properties of concrete incorporating rubber and fibres from tyre recycling”, Constr Build Mater., vol. 144, pp. 563-573, jul. 2017, doi: https://doi.org/10.1016/j.conbuildmat.2017.03.196

[14] A.R. Khaloo, M. Dehestani y P. Rahmatabadi, “Mechanical properties of concrete containing a high volume of tire-rubber particles”, J. Waste Manag., vol. 28, no. 12, pp. 2472-2482, dic. 2008, doi: https://doi.org/10.1016/j.wasman.2008.01.015

[15] R. Roychand, R. J. Gravina, Y. Zhuge, X. Ma, O. Youssf y J. E. Mills, “A comprehensive review on the mechanical properties of waste tire rubber concrete”, Constr Build Mater., vol. 237, no. 117651, mar. 2020, doi: https://doi.org/10.1016/j.conbuildmat.2019.117651

[16] V. L. Shulman, “Tire Recycling”, Waste., vol: Second Edition, no. chapter 26, pp. 489-515, 2019, doi: https://doi.org/10.1016/B978-0-12-815060-3.00026-8

[17] K. Formela, “Sustainable development of waste tires recycling technologies – recent advances, challenges and future trends”, Advanced Industrial and Engineering Polymer Research, vol: 4, no. 3, pp. 209-222, jul. 2021, doi: https://doi.org/10.1016/j.aiepr.2021.06.004

[18] Shin-ichi Sakai et al., “An international comparative study of end-of-life vehicle (ELV) recycling systems”, J. Mater. Cycles Waste Manag., vol: 16, pp. 1-20, 2014, doi: 10.1007/s10163-013-0173-2

[19] M. Nadal, J. Rovira, J. Díaz-Ferrero, M. Schuhmacher y J. L. Domingo, “Human exposure to environmental pollutants after a tire landfill fire in Spain: Health risks”, Environ. Int., vol: 97, pp. 37-44, oct. 2016, doi: 10.1016/j.envint.2016.10.016.

[20] G. Rosana, P. María Josefina, I. Patricia, K. Jerónimo, A. Ricardo y S. A. María Paz, “Ecological Roofing Tiles Made With Rubber And Plastic Wastes”, Adv. Mater. Res., vol: 844, pp. 458-461, nov. 2013, doi: 10.4028/www.scientific.net/AMR.844.458

[21] T. Khudyakova, Andrey Shmidt y Svetlana Shmidt, “Sustainable development of smart cities in the context of the implementation of the tire recycling program”, Entrepreneurship Sustain. Issues, vol: 8, no. 2, pp. 698-715, dic. 2020, doi: http://doi.org/10.9770/jesi.2020.8.2(42)

[22] M. Villar – Vega y V. Silva, “Assessment of earthquake damage considering the characteristics of past events in South America”, Soil Dyn. Earthq. Eng., vol: 99, pp. 86-96, ago. 2017, doi: 10.1016/j.soildyn.2017.05.004

[23] K. Okazaki, K. S. Pribadi, D. Kusumastuti y T. Saito (Set. 2012), Comparison of Current Construction Practices of Non-Engineered Buildings in Developing Countries, presentado en: 15th World Conference on Earthquake Engineering 2012 (15WCEE), Lisboa, Portugal. [Online]. Disponible: chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/http://toc.proceedings.com/24574webtoc.pdf
[24] Instituto Nacional de Defensa Civil (INDECI), 2017, “Escenario sísmico para Lima Metropolitana y Callao: sismo 8.8 Mw”, Instituto Nacional de Defensa Civil, Dirección de Preparación, Subdirección de Sistematización de Información sobre Escenarios de Riesgo de Desastres. [online]. Disponible: https://www.indeci.gob.pe/wp-content/uploads/2019/01/201711231521471-1.pdf

[25] D. V. Mallick, S. E. Dritsos y D. Sonda, “Construction and Strengthening of Non – Engineered Buildings in Developing Seismic – Prone Countries”, Struct. Eng. Int., vol: 23, no. 2, pp. 225-228, feb. 2013, doi: 10.2749/101686613X13363929988610

[26] A. Muñoz, M. Díaz y R. Reyna, “Estudio de aplicabilidad de un prototipo de aislador de bajo costo utilizando caucho reciclado”, tecnia, vol: 29, no. 2, pp. 65-73, ago. 2019, doi: https://doi.org/10.21754/tecnia.v29i2.706

[27] H. K. Mishra, A. Igarashi y H. Matsushima, “Finite element análisis and experimental verification of the scrap tire rubber pad isolator”, Bull. Earthq. Eng., vol: 11, pp. 687-707, oct. 2012, doi: 10.1007/s10518-012-9393-4

[28] Standard Test Method for Static Modulus of Elasticity and Poisson’s Ratio of concrete in Compression, ASTM Designation: C 469 – 02

[29] L. Qingfu, G. Wei y K. Yihang, “Parameter calculation and verification of concrete plastic damage model of ABAQUS”, IOP Conf. Ser.: Mater. Sci. Eng., vol. 794, no. 012036, dic. 2019, doi: 10.1088/1757-899X/794/1/012036

[30] Material Stress – Strain Curves, Computers and Structures Inc., Walnut Creek, CA, USA, 2008

[31] Model Code 2010, fib CEB – FIP, 2010

[32] U. Gudsoorkar y R. Bindu, “Computer simulation of hyper elastic re-treaded tire rubber with ABAQUS”, Mater. Today: Proc., vol. 43, no. Part 2, pp. 1992-2001, 2021, doi: https://doi.org/10.1016/j.matpr.2020.11.432

Published

2024-04-05

How to Cite

[1]
J. F. Tovar Rodríguez and F. J. Taipe Carbajál, “BEHAVIOR OF CONCRETE SUBJECTED TO COMPRESSION LOADS INCLUDING THE SRD AS AN ABSORSION ENERGY DEVICE, USING RECYCLED TIRE SHEETS”, TEC, vol. 33, no. 2, Apr. 2024.

Issue

Section

Civil Engineering, Geotechnics and Earthquake Resistance