Seismic response evaluation using random vibration theory in three soil profiles from Lima, Peru

Authors

  • Brandon Omar Pastor Oliveros Stantec, Lima, Perú
  • Diana Lucía Calderón Cahuana Centro Japón-Perú para la Investigación de Ingeniería Sísmica y Mitigación de Desastres, Lima, Perú
  • Carlos Eduardo Gonzales Trujillo Centro Japón-Perú para la Investigación de Ingeniería Sísmica y Mitigación de Desastres, Lima, Perú

DOI:

https://doi.org/10.21754/tecnia.v32i2.1420

Keywords:

Site response analysis, Probabilistic seismic hazard analysis, Shear-wave velocity profiles, Random vibration theory, Lima

Abstract

Seismic response analyses are performed using a minimum number of seismic records as input motions in order to achieve a statistically strong estimation. Unfortunately, the available information recorded from the current seismic networks is still scarce regarding events with considerable magnitude. In this context, the Random Vibration Theory (RVT) arises as an alternative tool for performing site response analyses without the need of seismic records, since it only requires adequate probabilistic seismic hazard assessment.

In this study, RVT was applied to three shear-wave velocity profiles in Lima city with distinct geomorphological origin. These profiles are characteristic for gravelly, sandy and fine deposits so the influence of each soil type in their corresponding transfer function was taken into account. In that sense, the three RVT-based normalized response spectra show good agreement with the design spectra specified in the Peruvian code, despite some amplification in the short (below 0.10 s) and long (above 0.80 s) period ranges related to noise or far-field effects. Furthermore, RVT-based response spectra for La Punta and Villa el Salvador show good agreement with the time-series based analyses from a previous study.

In addition, spectral acceleration values surpass those specified in the Peruvian code for a range beyond the corner period. This could suggest that the soil profile characterization based on the time-averaged shear wave velocity from the upper 30 m might be insufficient to evaluate the overall seismic behavior of a soil deposit. Therefore, additional parameters that account for the deeper soil substructure might be required.

Downloads

Download data is not yet available.

Author Biographies

Diana Lucía Calderón Cahuana, Centro Japón-Perú para la Investigación de Ingeniería Sísmica y Mitigación de Desastres, Lima, Perú

PhD. and Master of Engineering received from Chiba University, Japan. Civil Engineer from the National University of Engineering, Peru. Auxiliar Professor at the undergraduate school of engineering of the National University of Engineering. Head of the Geotechnical Laboratory of CISMID. Experience in estimation of soil velocity profiles with geophysical methods, seismic microzonation, and site effects estimation.

Carlos Eduardo Gonzales Trujillo, Centro Japón-Perú para la Investigación de Ingeniería Sísmica y Mitigación de Desastres, Lima, Perú

PhD. and Master of Engineering received from Chiba University, Japan. Bachelor in Civil Engineering received from the National University of Engineering, Peru. Experience in studies related to topographic and irregular substructure effects in populated slopes, seismic microzonation studies, site effects estimation, strong-motion networks and ambient vibration procedures.

References

[1] Hanks, T., & McGuire, R. (1981). The character of high-frequency strong ground motion. Bull. Seism. Soc. Am., 2071 - 2095.
[2] Boore, D. (1983). Stochastic simulation of high-frequency ground motion based on seismological models of the radiated spectra. Bul. Seism. Soc. Am., 1865-1894.
[3] Boore, D., & Joyner, W. (1984). A note on the use of random vibration theory to predict peak amplitudes of transient signals. Bull. Seism. Soc. Am., 2035-2039.
[4] Schneider, J., Silva, W., Chiou, S., & Stepp, J. (1991). Estimation of ground motion at close distance using the band-limited-white-noise model. Proc. Fourth Int. Conf. on Seismic Zonation, (pp. 187-194). Stanford, CA.
[5] Silva, W., Abrahamson, N., Toro, G., & Constantino, C. (1997). Description and validation of the stochastic ground motion model, Final Report. Brookhaven National Library. Associated Universities, New York.
[6] Rathje, E., & Ozbey, M. (2006). Site-Specific Validation of Random Vibration Theory-Based Seismic Site Response Analysis. J. Geotech. and Geoenviron. Eng., 911-922.
[7] Chavez, J. (2006). Leyes de Atenuación para Aceleraciones Espectrales en el Perú. Lima, Perú: Facultad de Ingeniería Civil - Universidad Nacional de Ingeniería (in Spanish).
[8] Brune, J. (1970). Tectonic Stress and the Spectra of Seismic Shear Wave from Earthquake. Journal of Geophysical Research, 4997-5009.
[9] Brune, J. (1971). Correction. Journal of Geophysics Research, 5002.
[10]Kottke, A., Rathje, E., & Wang, X. (2013). Technical Manual for Strata. Geotechnical Engineering Center. Department of Civil, Architectural, and Environmental Engineering. University of Texas.
[11] Roncal, M. (2017). Determinación del peligro sísmico en el territorio Nacional y elaboración de aplicativo web. Lima, Perú: Facultad de Ingeniería Civil - Universidad Nacional de Ingeniería (in Spanish).
[12] ASCE. (2016). Minimum Design Loads for Buildings and Other Structures. ASCE/SEI 7-16, ASCE Structural Engineering Institute, Reston, VA.
[13] Campbell, K. (2003). Prediction of strong ground motion using the hybrid empirical method and its use in the development of ground-motion (attenuation) relationships in Eastern North. Bull. Seism. Soc. Am., 1012-1033.
[14]Boroschek, R., Céspedes, S., & Ruiz, R. (2019). Modelos de movimiento fuerte para duración e intensidad de Arias para registros de movimiento fuerte en Chile. XII Congreso Chileno de Sismología e Ingeniería Sísmica ACHISINA. Valdivia, Chile (in Spanish).
[15] Rathje, E., & Kottke, A. (2008). Procedures for Random Vibration Theory based seismic site response analyses.
[16]Ozbey, M., & Rathje, E. (2006). Site-specific Comparison of Random Vibration Theory-based and Traditional Seismic Site Response Analysis. Austin, Texas: The University of Texas.
[17] Cartwright, E., & Longuet-Higgins, M. (1956). The Statistical Distribution of the Maxima of a Random Function. Proc. R. Soc. Lond. A, (pp. 212-232).
[18]Boore, D. (2003). Simulation of Ground Motion Using Stochastic Method. Pure and Applied Geophysics, 635-676.
[19]Rathje, E., Kottke, A., & Ozbey, M. (2005). Using Inverse Random Vibration Theory to develop input Fourier Amplitude Spectra for use in site response. 16th International Conference on Soil Mechanics and Geotechnical Engineering: TC4 Earthquake Geotechnical Engineering Satellite Conference, (pp. 160-166). Osaka, Japan.
[20] Kramer, S. (1996). Geotechnical Earthquake Engineering. (pp. 254 - 274). New Jersey: Prentice Hall.
[21] Hashash, Y., Musgrove, M., Harmon, J., Ilhan, O., Xing, G., Numanoglu, O., Park, D. (2020). DEEPSOIL 7, Used Manual. Board of Trustees of University of Illinois at Urbana-Champaign.
[22]Soto, J. (2016). Evaluación de espectro de respuesta mediante el análisis de respuesta de sitio. Lima, Perú: Facultad de Ingeniería Civil - Universidad Nacional de Ingeniería (in Spanish).
[23] CISMID. (2011). Estudio de Microzonificación Sísmica y Vulnerabilidad en la ciudad de Lima. Lima, Perú (in Spanish).
[24] Calderon, D., Lazares, F., Aguilar, Z., Sekiguchi, T., & Nakai, S. (2011). Estimation of deep soil profiles in Lima Peru. Journal of Civil Engineering and Architecture, 618-627.
[25] MRA Corporativo. (2012). Servicio de Perforaciones Diamantinas y Ensayos Geotécnicos en los Distritos de Villa el Salvador, Cercado de Lima y Región del Callao. Lima (in Spanish).
[26] SENCICO. (2021). Mapa de amplificación sísmica de Lima Metropolitana con base en correlaciones de datos multidisciplinarios. Manuscript in preparation (in Spanish).
[27] Menq, F. (2003). Dynamic Properties of Sandy and Gravelly Soils. Austin, Texas: The University of Texas at Austin.
[28] Zhang, J., Andrus, R., & Juang, C. (2005). Normalized shear modulus and material damping ratio relationships. J. Geotech. Geoenviron. Eng., 453-464.
[29] Carrillo, A. (1979). Estabilidad y resistencia del conglomerado de Lima Metropolitana. Revista el Ingeniero Civil (in Spanish).
[30] Shuan, L. (2011). Investigación de la Matriz en las gravas del Perú modelo Grava de Ventanilla. Lima, Perú: Facultad de Ingeniería Civil - Universidad Nacional de Ingeniería (in Spanish).
[31] MVCS. (2016). Decreto Supremo que modifica la norma técnica E.030 "Diseño sismorresistente" del reglamento nacional de edificaciones. Lima, Perú (in Spanish).
[32] Verdugo, R., & Peters, G. (2017). Seismic soil classification and elastic response spectra. 16th World Conference on Earthquake Engineering.
[33] Ruz, F., & Liam, W. (2019). New Chilean seismic code and the use of Nakamura period for assessing damage potential. 7th International Conference on Earthquake Geotechnical, (pp. 4760-4767). Rome, Italy.

Published

2022-08-08

How to Cite

[1]
B. O. Pastor Oliveros, D. L. Calderón Cahuana, and C. E. Gonzales Trujillo, “Seismic response evaluation using random vibration theory in three soil profiles from Lima, Peru”, TECNIA, vol. 32, no. 2, pp. 89–100, Aug. 2022.

Issue

Section

Civil Engineering, Geotechnics and Earthquake Resistance

Most read articles by the same author(s)