Evaluation of seismic risk of buildings through vulnerability functions in the city of Ayacucho – Peru
DOI:
https://doi.org/10.21754/tecnia.v32i2.1377Keywords:
Seismic hazard, vulnerability, seismic risk, earthquake, MASWAbstract
Peru is one of the countries most exposed to catastrophic events worldwide such as: floods, debris flow, tsunamis, earthquakes. Particularly, earthquakes are generated by the interaction of the Nazca and South American plates known as the subduction process and shallow faults. Likewise, another major problem that Peru is going through is informality in construction, which, added to a large earthquake, could bring with it great economic losses and human lives. Therefore, these problems have motivated the development of this research, which aims to evaluate the seismic risk of buildings in the district of Ayacucho - Peru. In this sense, the probabilistic seismic threat is evaluated using the R-CRISIS program, accompanied by geophysical studies such as MASW (Multichannel Analysis of Surface Waves) that allow the soil to be characterized based on shear wave velocities. Furthermore, the seismic vulnerability of buildings is evaluated using the vulnerability index method, which is based on eleven essential parameters that characterize the susceptibility of buildings to damage after the occurrence of an earthquake. Finally, the evaluation of seismic risk is carried out through the use of vulnerability functions and the results are reflected in representative maps for different seismic scenarios, which are prepared using Geographic Information Systems (GIS). The results show great economic losses and human lives that would be caused by different seismic intensities in the Ayacucho district. Furthermore, more than 50% of buildings could suffer heavy or severe damage during the occurrence of a rare earthquake whose return period is 475 years.
Downloads
References
[2] A. Dunant, M. Bebbington, and T. Davies, “Probabilistic cascading multi-hazard risk assessment methodology using graph theory, a New Zealand trial”, International Journal of Disaster Risk Reduction, vol. 54, 2020.
[3] S. Kameshwar and J. Padgett, “Multi-hazard risk assessment of highway bridges subjected to earthquake and hurricane hazards”, Engineering Structures, vol. 78, pp. 154-166, 2014.
[4] Y. Liu et al., “Scenario-based seismic vulnerability and hazard analyses to help direct disaster risk reduction in rural Weinan, China”, International Journal of Disaster Risk Reduction, vol. 48, 2020.
[5] J. Ramos, “Microzonificación sísmica del distrito de Ancón”, tesis de grado, Univ. Nac. Ingeniería, Lima, Perú, 2017 [En línea]. Disponible en: http://cybertesis.uni.edu.pe/handle/uni/9524
[6] A. Pretell y Z. Aguilar, “Microzonificación geotécnica sísmica para el ámbito Pisco, San Clemente, Túpac Amaru, San Andrés y Paracas”, 2014 [En línea]. Disponible en: https://app.ingemmet.gob.pe/biblioteca/pdf/CPG16-038.pdf
[7] R. Delgadillo, “Microzonificación geotécnica sísmica del distrito de Independencia - Lima”, tesis de grado, Univ. Nac. San Cristóbal de Huamanga, Ayacucho, Perú, 2014 [En línea]. Disponible en: http://repositorio.unsch.edu.pe/handle/UNSCH/784
[8] U. Mena, “Evaluación del riesgo sísmico en zonas urbanas”, tesis doctoral, Univ. Pol. Catalunya, 2002 [En línea]. Disponible en: http://hdl.handle.net/2117/93534
[9] P. Angeletti, A. Bellina, E. Guagenti, A. Moretti, and V. Petrini, “Comparison between vulnerability assessment and damage index, some results”, in the 9th World Conference on Earthquake Engineering, Tokyo-Kyoto, 1988, pp. 181-186.
[10] A. Barbat, F. Yépez, and J. Canas, “Damage scenarios simulation for seismic risk assessment in urban zones”, Earthquake spectra, vol. 12, no. 3, pp. 371-394, 1996.
[11] E. Maldonado, I. Gómez, and G. Chio, “Simulating vulnerability functions and seismic damage probability matrix for reinforced concrete frame buildings”, Ingeniería e Investigación, vol. 18, no. 3, pp. 28-40, 2008.
[12] N. Quispe, “Evaluación del riesgo sísmico en la ciudad de Ayacucho”, tesis de maestría, Univ. Nac. Ingeniería, Lima, Perú, 2004 [En línea]. Disponible en: http://cybertesis.uni.edu.pe/handle/uni/2876
[13] J. Castillo y J. Alva, “Peligro sísmico en el Perú”, VII Congreso Nacional de Mecánica de Suelos e Ingeniería de Cimentaciones, Lima, 1993.
[14] A. Bolaños y O. Monroy, “Espectros de peligro sísmico uniforme”, tesis de maestría, Pont. Univ. Católica del Perú, 2004 [En línea]. Disponible en: http://hdl.handle.net/20.500.12404/1331
[15] M. Roncal, “Determinación del peligro sísmico en el territorio nacional y elaboración de aplicativo web”, tesis de grado, Univ. Nac. Ingeniería, Lima, Perú, 2017 [En línea]. Disponible en: http://cybertesis.uni.edu.pe/handle/uni/12214
[16] F. Marín, “Evaluación del riesgo sísmico del centro histórico de Huánuco”, tesis de maestría, Univ. Nac. Ingeniería, Lima, Perú, 2012 [En línea]. Disponible en: http://cybertesis.uni.edu.pe/handle/uni/1236
[17] M. Silva y C. Quesquén, “Estudio de riesgo sísmico, en la ciudad de Chiclayo, zona este (av. Sáenz Peña, av. Castañeda Iparraguirre, av. Nicolás de Piérola, av. Jorge Chávez, y av. Bolognesi)”, tesis de grado, Univ. Nac. Pedro Ruiz Gallo, Lambayeque, Perú, 2020 [En línea]. Disponible en: https://hdl.handle.net/20.500.12893/8115
[18] J. Olarte, J. Julca, y E. Orbegoso, “Evaluación del riesgo sísmico del centro histórico de Chiclayo”, Univ. Nac. Pedro Ruiz Gallo, Lambayeque, Perú, 2008 [En línea]. Disponible en: https://bit.ly/3uRTBeo
[19] A. Castillo, “Seismic risk scenarios for buildings in Mérida, Venezuela. Detailed vulnerability assessment for non-engineered housing”, tesis doctoral, Univ. Pol. Catalunya, 2005 [En línea]. Disponible en: http://hdl.handle.net/2117/93848
[20] E. Silgado, “Historia de los Sismos más Notables Ocurridos en el Perú (1513-1974)”, Instituto de Geología y Minería, Serie C: Geodinámica e Ingeniería Geológica, Boletín no. 3, 1978.
[21] S. Kramer, Geotechnical earthquake engineering. New Jersey, USA: Pearson Prentice Hall, 1996.
[22] T. Cahill and B. Isacks, “Seismicity and shape of the subducted Nazca plate”, Journal of Geophysical Research: Solid Earth, vol. 97, no. B12, pp. 17503-17529, 1992.
[23] S. Singh, E. Bazan, and L. Esteva, “Expected earthquake magnitude from a fault”, Bulletin of the Seismological Society of America, vol. 70, no. 3, pp. 903-914, 1980.
[24] B. Gutenberg and C. Richter, “Frequency of earthquakes in California”, Bulletin of the Seismological society of America, vol. 34, no. 4, pp. 185-188, 1944.
[25] R. Youngs, S. Chiou, W. Silva, and J. Humphrey, “Strong ground motion attenuation relationships for subduction zone earthquakes”, Seismological Research Letters, vol. 68, no. 1, pp. 58-73, 1997.
[26] K. Sadigh, C. Chang, J. Egan, F. Makdisi, and R. Youngs, “Attenuation relationships for shallow crustal earthquakes based on California strong motion data”, Seismological research letters, vol. 68, no. 1, pp. 180-189, 1997.
[27] J. Benjamin and C. Cornell, Probability, Statistics, and Decision for Civil Engineers. New York, NY, USA: McGraw-Hill, 1970.
[28] C. Cornell, “Engineering seismic risk analysis”, Bulletin of the seismological society of America, vol. 58, no. 5, pp. 1583-1606, 1968.
[29] M. Ordaz et al., “Development and validation of software CRISIS to perform probabilistic seismic hazard assessment with emphasis on the recent CRISIS2015”, Computación y Sistemas, vol. 21, no. 1, pp. 67-90, 2017.
[30] Instituto Nacional de Defensa Civil, “Mapa de peligros de la ciudad de Ayacucho”, Proyecto INDECI - PNUD PER /02/051 ciudades sostenibles, 2003.
[31] J. Palomino, “Estudios geofísicos para la zonificación sísmica de la ciudad de Ayacucho”, tesis de grado, Univ. Nac. San Cristóbal de Huamanga, Ayacucho, Perú, 2008.
[32] A. López, “Evaluación geofísica geotécnica del proyecto central hidroeléctrica chilia, región Huanuco-Ancash”, tesis de grado, Univ. Nac. San Agustin de Arequipa, Perú, 2016 [En línea]. Disponible en: http://repositorio.unsa.edu.pe/handle/UNSA/2535
[33] D. Benedetti and V. Petrini, “Sulla vulnerabilita sismica di edifici in muratura: un método di valutazione. A method for evaluating the seismic vulnerability of masonry buildings”, L'industria delle Costruzioni, no. 149, pp. 66-74, 1984.
[34] J. Rodríguez, “Aplicación del método italiano del índice de vulnerabilidad sísmica en viviendas del asentamiento humano El Altillo en el distrito del Rímac”, tesis de grado, Univ. Nac. Ingeniería, Lima, Perú, 2005 [En línea]. Disponible en: http://cybertesis.uni.edu.pe/handle/uni/2954
[35] F. Yépez, A. Barbat, y J. Canas, Riesgo, peligrosidad y vulnerabilidad sísmica de edificios de mampostería. Barcelona, España: Centro Internacional de Métodos Numéricos en Ingeniería (CIMNE), 1995.
[36] I. Gómez y E. Rodríguez, “Generación de funciones de vulnerabilidad para edificaciones de mampostería no reforzada de baja altura utilizando técnicas de simulación” tesis de grado, Univ. Ind. Santander, Colombia, 2006.
[37] C. Zavala y R. Proñao, “Estimación rápida de la Respuesta Sísmica en base a sistemas de un grado de libertad para el cálculo de vulnerabilidad sísmica”, en XIV Congreso Nacional de Ingeniería Civil, Iquitos, Perú, 2003.
[38] H. Scaletti, “Estimación Rápida de Desplazamientos Laterales Producidos por Sismo”, en Conf. Internacional de Ingeniería Sísmica, Lima, Perú, 2007.
[39] E. Miranda, “Approximate seismic lateral deformation demands in multistory buildings”, Journal of Structural Engineering, vol. 125, no.4, pp. 417-425, 199.
[40] S. Grimaz, F. Meroni, V. Petrini, R. Tomasoni, and G. Zonno, “El papel de los datos de daños del terremoto de Friuli en el estudio de modelos de vulnerabilidad sísmica de edificios de mampostería”, en Conf. Ciencia y terremotos - Análisis y perspectiva desde la experiencia de Friuli - 1976/1996, Italia, 1996, pp. 89-96.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 TECNIA
This work is licensed under a Creative Commons Attribution 4.0 International License.