Evaluation of an underfloor heating system installed in an educational-experimental module built with non-conventional materials on a small scale for higher education
DOI:
https://doi.org/10.21754/tecnia.v32i1.1370Keywords:
Experimental Module, Heating System, Underfloor Heating, Thermal Inertia, User InterfaceAbstract
In this case study, an experimental module of a water-based underfloor heating system, was developed for the thermo-fluids laboratory located in the Universidad Católica de Santa María, with the aim of confirming the possibility of correct emulation of the thermal principles of these type of heating systems within a short time of two hours maximum (due to the high thermal inertia of these systems and the limited time to carry out experimental procedures in laboratories of universities), all this using alternative materials that make easier the process of building and maintenance on a limited budget, while keeping the capability to carry through other experimental procedures related to underfloor heating systems. So that, a proper evaluation of the proposal to use a module to perform experimental procedures related to underfloor heating, can be made. To answer the question posed in this article, the experimental procedure on the module focuses primely on monitoring temperatures of the floor, water and test chamber as well as the time. Results show that using a water temperature of 60°C for 60 minutes, a temperature increase of 6.5°C is recorded in the test chamber, whereupon the heating system is shut down, and the chamber air is replaced, exists a temperature drop in the test chamber at a lower rate, with 1.1°C during 30 minutes. The module was developed in such a way that it can be manipulated via both, a user interface on a computer or without it.
Downloads
References
[2] F. Yang, J. Liu, Q. Sun, L. Cheng, y R. Wennersten, “Simulation analysis of household solar assistant radiant floor heating system in cold area”, Energy Procedia, 2019, vol. 158, pp. 631–636. doi: 10.1016/j.egypro.2019.01.166.
[3] Uponor, “Manual técnico de Climatización Invisible”, Uponor Hispania, S.A.U, Madrid, 2013, [En línea]. Disponible en: http://www.solarcondicionado.pt/files/catalogs/Cat%C3%A1logo-Piso-Radiante-Uponor-2017.pdf
[4] ALB Sistemas S.A., “Sistema de climatización radiante. Manual Técnico”, ALB Sistemas, Santa Oliva, 2017, [En línea]. Disponible en: https://fdocuments.ec/document/sistema-de-climatizacin-radiante-manual-tcnico-12017-prueba-de-presin-30.html?page=1
[5] Sistemas BARBI, “Manual Técnico Suelo Radiante”, Industrial BLANSOL S.A., Barcelona, [En línea]. Disponible en: https://sistemamid.com/calefaccion-barbi-manual-tecnico-de-suelo-radiante/
[6] J. Diaz y F. Tinta, “Diseño y Construcción de un Módulo Experimental de Suelo Radiante a Energía Solar”, tesis para obtener el título profesional de ingeniero mecánico, Universidad Nacional de San Antonio Abad del Cusco, 2017.
[7] W. R. Berrio Huarahuara y F. Hancco Mamani, “Diseño de un prototipo de calefacción por m2 de superficie de piso radiante utilizando PCMS aprovechando la energía solar térmica en la ciudad de Puno”, tesis para optar el título profesional de ingeniero mecánico electricista, Universidad Nacional del Antiplano, 2017.
[8] J. Marrero Marín, “Calefacción Mediante Suelo Radiante”, 2009, [En línea]. Disponible en: https://silo.tips/download/calefaccion-mediante-suelo-radiante
[9] B. Larwa, S. Cesari, y M. Bottarelli, “Study on thermal performance of a PCM enhanced hydronic radiant floor heating system”, Energy, vol. 225, Jun. 2021, doi: 10.1016/j.energy.2021.120245.
[10] R. Borinaga- Treviño, J. Cuadrado, J. Canales, y E. Rojí, “Lime mud waste from the paper industry as a partial replacement of cement in mortars used on radiant floor heating systems”, Journal of Building Engineering, vol. 41, Sep. 2021, doi: 10.1016/j.jobe.2021.102408.
[11] A. el Mays et al., “Using phase change material in under floor heating”, Energy Procedia, 2017, vol. 119, pp. 806–811. doi: 10.1016/j.egypro.2017.07.101.
[12] S. Oubenmoh et al., “Some particular design considerations for optimum utilization of under floor heating systems”, Case Studies in Thermal Engineering, vol. 12, pp. 423–432, Sep. 2018, doi: 10.1016/j.csite.2018.05.010.
[13] CTE, “DA DB-HE-1 Ahorro Energético (Cálculo de parámetros característicos de la envolvente)”, pp. 1–19, 2015.
[14] CEDIC, “Manual de tubo y accesorios de cobre”, p. 173, 2009.
[15] Instituto de Promoción Cerámica de España (IPC)., “La calefacción radiante por agua.”
[16] A. J. Ghajar y Y. A. Cengel., Heat and Mass Transfer: Fundamentals & Applications. 2011.
[17] REHAU, “Sistemas de calefacción y refrescamiento por superficies radiantes”, 2019.
[18] Giacomini, “Sistemas de suelo radiante para calefacción y refrigeración”, 2015.
[19] CTE, “DB-HS Salubridad,” Septiembre, vol. 2013, pp. 1–129, 2007, [En línea]. Disponible en: http://www.arquitectura-tecnica.com/hit/Hit2016-2/DBHE.pdf
[20] IDAE, Guía Técnica de Instalaciones de Climatización por Agua, 2008.
[21] Jeffrey. Travis y Jim. Kring, LabVIEW for everyone : graphical programming made easy and fun. Prentice Hall, 2007.
[22] Atmel Corporation, “Atmel-42735-8-bit-AVR-Microcontroller-ATmega328-328P_Datasheet”, 2012.
[23] M. H. Rashid, Electrónica de Potencia. Circuitos, Dispositivos y Aplicaciones, Prentice Hall Hispanoamericana S.A., 1993, [En línea], Disponible en: chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/https://riverraid17.files.wordpress.com/2010/03/electronica-de-potencia-rashid-espanol.pdf
[24] K. Ogata, Sistemas de Control en Tiempo Discreto, vol. 66, 1996.
[25] Texas Instruments., “Datasheet Lm35”, no. November, pp. 1–13, 2013.
[26] K. Ogata, “Modern Control Engineering”, Pearson Education Inc., 2002, [En línea]. Disponible en: chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/http://docs.znu.ac.ir/members/pirmohamadi_ali/Control/Katsuhiko%20Ogata%20_%20Modern%20Control%20Engineering%205th%20Edition.pdf
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 TECNIA
This work is licensed under a Creative Commons Attribution 4.0 International License.