Development of an Interpolation Scheme for Seismic Indexes in Lima Metropolitan, Peru

Authors

  • Roger Leonardo Garay Avendaño Facultad de Ingeniería Civil, Universidad Nacional de Ingeniería, Lima - Perú
  • Luis Angel Moya Huallpa GERDIS, Departamento de Ingeniería, Pontificia Universidad Católica del Perú
  • Carlos Eduardo Gonzales Trujillo Centro de Investigación en Ingeniería Sísmica y Mitigación de Desastres de Japón-Perú, Lima, Perú
  • Luis Fernando Lazares La Rosa Centro de Investigación en Ingeniería Sísmica y Mitigación de Desastres de Japón-Perú, Lima, Perú
  • Miguel Augusto Diaz Figueroa Centro de Investigación en Ingeniería Sísmica y Mitigación de Desastres de Japón-Perú, Lima, Perú
  • Carlos Alberto Zavala Toledo Centro de Investigación en Ingeniería Sísmica y Mitigación de Desastres de Japón-Perú, Lima, Perú
  • Fumio Yamazaki National Research Institute for Earth Science and Disaster Resilience, Tsukuba, Japan
  • Diana Lucia Calderon Cahuana Centro de Investigación en Ingeniería Sísmica y Mitigación de Desastres de Japón-Perú, Lima, Perú
  • Kevin Steve Huerta Gonzales Centro de Investigación en Ingeniería Sísmica y Mitigación de Desastres de Japón-Perú, Lima, Perú

DOI:

https://doi.org/10.21754/tecnia.v32i2.1346

Keywords:

Kriging interpolation, Strong Motion, PGA

Abstract

In recent years, the development of seismic networks in Metropolitan Lima, administrated by public and private institutions, has received special attention since it makes possible the quantification of different seismic indexes under the occurrence of earthquakes. Therefore, the integration of the information both from acceleration sensors and site conditions from microzoning studies allows the estimation of the possible extent of the damage in quasi-real time. In this study, the implementation of a system to evaluate seismic parameters in a uniform grid of 250 x 250 m2 resolution is reported. In this regard, peak ground acceleration (PGA) values from the available time-history records are computed and reduced to the engineering bedrock level. Then, by means of the interpolation technique called Ordinary Kriging, in which each seismic station is considered as a random variable and the correlation between a pair of such random variables depends only on the distance between their coordinates, the acceleration distribution is evaluated. Amplification factors are applied in order to finally bring the PGA up to the surface level. A quantitative evaluation of the accuracy of our results is performed using two recent earthquakes with moment magnitude larger than 5:  the 2019 Mw 8.0 Lagunas earthquake and 2021 Mw 6.0 Mala earthquake. The results have reproduced to some extent the seismic response of the diverse geomorphological deposits in Metropolitan Lima and suggest the inclusion of a larger number of strong motion stations in order to reduce the estimation errors.

Downloads

Download data is not yet available.

References

[1] D.J. Wald, K.S. Jaiswal, K. Marano, M.G. Hearne, K. Lin, D. Slosky, K.E. Allstadt, E.M. Thompson, C.B. Worden, G.P. Hayes, y V. Quitoriano, “An update on USGS nearl-real-time earthquake shaking and impact products,” World Conference on Earthquake Engineering, Sendai, Japan, 2020, 12 pages.
[2] M. Matsuoka y N. Yamamoto, “Web-based quick estimation system of strong ground motion maps using engineering geomorphologic classification map and observed seismic records,” World Conference on Earthquake Engineering, Lisboa, Portugal, 2012, 10 pages.
[3] A.C. Zülfikar, N.Ö.Z. Fercan, S. Tunç, y M. Erdik, “Real-time earthquake shake, damage, and loss mapping for Istanbul metropolitan area,” Earth Planets Space, 69, 9, 2017.
[4] L. Moya, E. Mas, B. Adriano, S. Koshimura, F. Yamazaki, y W. Liu, “An Integrated Method to Extract Collapsed Buildings from Satellite Imagery, Hazard Distribution and Fragility Curves,” Int. J. Disaster Risk Reduct. 31, 1374-1384, 2018.
[5] L. Moya, L.R. Marval-Perez, E. Mas, B. Adriano, S. Koshimura, F. Yamazaki, “Novel Unsupervised Classification of Collapsed Buildings Using Satellite Imagery, Hazard Scenarios and Fragility Functions,” Remote Sens., 10, 296, 2018.
[6] L. Moya, C. Geiß, M. Hashimoto, E. Mas, S. Koshimura and G. Strunz, "Disaster Intensity-Based Selection of Training Samples for Remote Sensing Building Damage Classification," IEEE Transactions on Geoscience and Remote Sensing, vol. 59, no. 10, pp. 8288-8304, Oct. 2021.
[7] UNI-CIP-SENCICO (last accessed on December 2021) Red Acelerográfica [Online]. Available: http://www.red-acelerografica-peru.uni.edu.pe/es/main/home
[8] T. Sekiguchi, D. Calderon, S. Nakai, Z. Aguilar, y F. Lazares, “Evaluation of Surface Soil Amplification for Wide Areas in Lima, Peru”, J. Disaster Res., Vol.8, No.2, pp. 259-265, 2013.
[9] Instituto Geofísico del Perú (last accessed on December 2021) Red Acelerométrica [Online]. Available: https://www.igp.gob.pe/servicios/informacion-acelerometrica/red-acelerometrica
[10] Centro Peruano Japones de Investigaciones Sísmicas y Mitigación de Desastres (last accessed on December 2021) Centro de Observación para la Ingeniería Sísmica del CISMID/FIC/UNI [Online]. Available: http://www.cismid.uni.edu.pe/ceois/red/

Published

2022-08-08

How to Cite

[1]
R. L. Garay Avendaño, “Development of an Interpolation Scheme for Seismic Indexes in Lima Metropolitan, Peru”, TECNIA, vol. 32, no. 2, pp. 1–7, Aug. 2022.

Issue

Section

Civil Engineering, Geotechnics and Earthquake Resistance

Most read articles by the same author(s)