Thermal performance analysis of a natural convection air solar heater with corrugated absorbent and porous bed

Authors

  • Jose Quiñonez Choquecota Departamento de Físico Matemáticas, Universidad Nacional del Altiplano, Av. Floral 1153, 21001 Puno, Perú

DOI:

https://doi.org/10.21754/tecnia.v21i2.1060

Keywords:

energy supply, energy balance, solar heating, heat tranfer

Abstract

The effect of the porous bed in a solar air heater with a V-corrugated absorbent plate and a design that facilitates free convection is analyzed, in terms of performance parameters and thermal efficiency. The collector was evaluated, with and without porous bed, under similar climatic conditions when mounted on a vertical wall. The results revealed that the mass flow is directly affected by the ambient temperature. It was observed that the porous bed affects the laminar sublayer of the absorbent plate generating greater turbulence that improves the rate of heat transfer, therefore, the collector with a porous bed presents a higher temperature inside and slightly decreases its efficiency. In addition, the porous bed works as a heat store that reduces instabilities which allows a uniform outlet temperature and allows to increase the operating time. The collector is inexpensive, respectful with the environment and feasible for space heating in frigid areas.

Downloads

Download data is not yet available.

References

[1] S. Singh y P. Dhiman, "Thermal performance of double pass packed bed solar air heaters – A comprehensive review," Renewable and Sustainable Energy Reviews, vol. 53, pp. 1010-1031, 2016. doi: https://doi.org/10.1016/j.rser.2015.09.058.
[2] S. Chamoli, R. Chauhan, N. S. Thakur, y J. S. Saini, "A review of the performance of double pass solar air heater," Renewable and Sustainable Energy Reviews, vol. 16, no. 1, pp. 481-492, 2012. doi: https://doi.org/10.1016/j.rser.2011.08.012.
[3] F. K. Forson, M. A. A. Nazha, y H. Rajakaruna, "Experimental and simulation studies on a single pass, double duct solar air heater," Energy Conversion and Management, vol. 44, no. 8, pp. 1209–1227, 2003. doi: https://doi.org/10.1016/S0196-8904(02)00139-5
[4] P. T. Saravanakumar, D. Somasundaram, y M. M. Matheswaran, "Thermal and thermo-hydraulic analysis of arc shaped rib roughened solar air heater integrated with fins and baffles," Solar Energy, vol. 180, pp. 360-371, 2019. doi: https://doi.org/10.1016/j.solener.2019.01.036
[5] S. Singh, "Experimental and numerical investigations of a single and double pass porous serpentine wavy wiremesh packed bed solar air heater," Renewable Energy, vol. 145 pp. 1361-1387, 2020. doi: https://doi.org/10.1016/j.renene.2019.06.137
[6] I. Singh y S. Singh, "A review of artificial roughness geometries employed in solar air heaters," Renewable and Sustainable Energy Reviews, vol. 92, pp. 405-425, 2018. doi: https://doi.org/10.1016/j.rser.2018.04.108
[7] T. Alam y M.-H. Kim, "Performance improvement of double-pass solar air heater – A state of art of review," Renewable and Sustainable Energy Reviews, vol. 79, pp. 779-793, 2017. doi: https://doi.org/10.1016/j.rser.2017.05.087
[8] P. Dhiman, N. S. Thakur, A. Kumar, y S. Singh, "An analytical model to predict the thermal performance of a novel parallel flow packed bed solar air heater," Applied Energy, vol. 88, pp. 2157–2167, 2011. doi: https://doi.org/10.1016/j.apenergy.2010.12.033
[9] A. A. El-Sebaii, S. Aboul-Enein, M. R. I. Ramadan, S. M. Shalaby, y B. M. Moharram, "Investigation of thermal performance of-double pass-flat and v-corrugated plate solar air heaters," Energy, vol. 36, no. 2, pp. 1076-1086, 2011. doi: https://doi.org/10.1016/j.energy.2010.11.042
[10] M. Hedayatizadeh, F. Sarhaddi, A. Safavinejad, F. Ranjbar, y H. Chaji, "Exergy loss-based efficiency optimization of a double-pass/glazed v-corrugated plate solar air heater," Energy, vol. 94, pp. 799-810, 2016. doi: https://doi.org/10.1016/j.energy.2015.11.046
[11] M. A. Karim y M. N. A. Hawlader, "Performance investigation of flat plate, v-corrugated and finned air collectors," Energy, vol. 31 no. 4, pp. 452-470, 2006. doi: https://doi.org/10.1016/j.energy.2005.03.007
[12] K. Sopian, M. A. Alghoul, E. M. Alfegi, M. Y. Sulaiman, y E. A. Musa, "Evaluation of thermal efficiency of double-pass solar collector with porous–nonporous media," Renewable Energy, vol. 34, no. 3, pp. 640-645, 2009. doi: https://doi.org/10.1016/j.renene.2008.05.027
[13] M. Cuzminschi, R. Gherasim, V. Girleanu, A. Zubarev, y I. Stamatin, "Innovative thermo-solar air heater," Energy and Buildings, vol. 158, no. 1, pp. 964–970, 2018. doi: https://doi.org/10.1016/j.enbuild.2017.10.082
[14] A. L. Hernández y J. E. Quiñonez, "Experimental validation of an analytical model for performance estimation of natural convection solar air heating collectors," Renewable Energy, vol. 117, pp. 202-216, 2018. doi: https://doi.org/10.1016/j.renene.2017.09.082
[15] A. P. Singh, A. Kumar, Akshayveer, y O. P. Singh, "Natural convection solar air heater: Bell-mouth integrated converging channel for high flow applications," Building and Environment, vol. 187, 2021. doi: https://doi.org/10.1016/j.buildenv.2020.107367
[16] ASHRAE-Standard, "Methods of Testing to Determine the Thermal Performance of Sollar Collectors," American Socienty of Heating, Refrigeration, and Air Conditioning Engineers, Atlanta 93-2003.
[17] P. Naphon, "Effect of porous media on the performance of the double-pass flat plate solar air heater," International Communications in Heat and Mass Transfer, vol. 32, no. 1-2, pp. 140-150, 2005. doi: https://doi.org/10.1016/j.icheatmasstransfer.2004.11.001
[18] J. A. Duffie y W. A. Beckman, Solar Engineering of Thermal Processes, 4 ed. John Wiley & Sons, Ltd, 2013.
[19] K. S. Ong, "Thermal performance of solar air heaters: Mathematical model and solution procedure," Solar Energy, vol. 55, no. 2, pp. 93-109, 1995. doi: https://doi.org/10.1016/0038-092X(95)00021-I
[20] A. L. Hernández y J. E. Quiñonez, "Analytical models of thermal performance of solar air heaters of double-parallel flow and double-pass counter flow," Renewable Energy, vol. 55, pp. 380-391, 2013. doi: https://doi.org/10.1016/j.renene.2012.12.050
[21] S. N. Saha y S. P. Sharma, "Performance Evaluation of Corrugated Absorber Double Flow Solar Air Heater Based on Energy, Effective and Exergy Efficiencies," International Journal of Mechanical & Mechatronics Engineering, vol. 17, no. 1, pp. 63-76, 2018.
[22] J. Quiñonez Choquecota, "Investigación experimental de un calentador solar de aire de doble flujo de convección natural de alta eficiencia," Journal of High Andean Research, vol. 21, no. 4, pp. 274-282, 2019. doi: http://dx.doi.org/10.18271/ria.2019.504
[23] D. Kumar y B. Premachandran, "Effect of atmospheric wind on natural convection based solar air heaters," International Journal of Thermal Sciences, vol. 138, pp. 263-275, 2019. doi: https://doi.org/10.1016/j.ijthermalsci.2018.12.010
[24] S. Vijayan, T. V. Arjunan, A. Kumar, y M. M. Matheswaran, "Experimental and thermal performance investigations on sensible storage based solar air heater," Journal of Energy Storage, vol. 31, 2020. doi: https://doi.org/10.1016/j.est.2020.101620
[25] S. Rashidi, J. A. Esfahania, y A. Rashidi, "A review on the applications of porous materials in solar energy systems," Renewable and Sustainable Energy Reviews, vol. 73, pp. 1198-1210, 2017. doi: https://doi.org/10.1016/j.rser.2017.02.028
[26] N. F. Jouybari y T. S. Lundström, "Performance improvement of a solar air heater by covering the absorber plate with a thin porous material," Energy, vol. 190, p. 116437, 2020. doi: https://doi.org/10.1016/j.energy.2019.116437

Published

2021-07-25

How to Cite

[1]
J. Quiñonez Choquecota, “Thermal performance analysis of a natural convection air solar heater with corrugated absorbent and porous bed”, TECNIA, vol. 31, no. 2, pp. 90–96, Jul. 2021.

Issue

Section

Solar and photovoltaic energy