Development of a pneumatic centrifugal concentrator for the dry processing of ultrafine particles of auriferous minerals: design of the prototype

Authors

DOI:

https://doi.org/10.21754/tecnia.v32i1.1058

Keywords:

Gravity concentration, dry processing of minerals, ultrafine gold, clean technologies

Abstract

The objective of this work is the design of a prototype of a pneumatic centrifugal concentrator that allows small-scale mining that takes place in desert and isolated places, to process ultrafine gold minerals in situ, cleanly, without the use of water and chemical reagents. A mathematical model based on the physico-phenomenological analysis of the differential sedimentation separation mechanism was applied in a film of laminar flow fluid, to determine the particle trajectory inside the bowl of the centrifugal concentrator as a function of the variables of bowl geometry, operating variables and physical characteristics of the particle and fluid. The simulations carried out showed a remarkable effect of the use of air instead of water on the trajectory of the particles within the fluid film. The results also showed that the capacity of the concentrator for the separation of particles by density difference rather than by size difference, was favored when applying low rotation speeds, high air feed rates and for particle sizes in the ultrafine range (< 40 μm). The prototype built will allow to carry out experimental laboratory tests that complement the understanding of the process and refine the design of the concentrator.

Downloads

Download data is not yet available.

References

[1] A. Das y B. Sarkar, “Advanced Gravity Concentration of Fine Particles : A Review”, Miner. Process. Extr. Metall. Rev., vol. 39, núm. 6, pp. 359–394, 2018.
[2] A. Gupta y D. S. Yan, Mineral Processing Design and Operation : An introduction, Second ed. Amsterdam, Netherlands: Elsevier, 2016.
[3] B. Wills y J. A. Finch, Wills’ Mineral Processing Technology: An Introduction to the Practical Aspects of Ore Treatment and Mineral Recovery, Eighth ed. Oxford, England: Butterworth-Heinemann, 2016.
[4] G. Deschenes, “Advances in the Cyanidation of Gold”, en Gold Ore Processing, Project Development and Operations, M. D. Adams, Ed. Netherlands: Elsevier, 2016, pp. 429–445.
[5] R. Dunne, “Flotation of Gold and Gold-Bearing Ores”, en Gold Ore Processing, Project Development and Operations, M. D. Adams, Ed. Netherlands: Elsevier, 2016, pp. 315–338.
[6] Q. Chen, H. ying Yang, L. lin Tong, H. qun Niu, F. sheng Zhang, y G. min Chen, “Research and application of a Knelson concentrator: A review”, Miner. Eng., vol. 152, núm. January, 2020.
[7] I. Alp, O. Celep, H. Deveci, y M. Vicil, “Recovery of gold from a free-milling ore by centrifugal gravity separator”, Iran. J. Sci. Technol. Trans. B Eng., vol. 32, núm. 1, pp. 67–71, 2008.
[8] P. Holtham, B. Gee, R. Dunne, y S. Gregory, “Recovery of fine gold particles using a Falcon ‘B’ separator”, en Proceedings of the International Symposium on the Treatment of Gold Ores, 2005, pp. 3–15.
[9] G. H. Luttrell, R. Q. Honaker, y D. I. Phillips, “Enhanced gravity separators: new alternatives for fine coal cleaning”, en 12th International Coal Preparation Conference, 1995, pp. 281–292.
[10] M. Greenwood, R. Langlois, y K. E. Waters, “The potential for dry processing using a Knelson Concentrator”, Miner. Eng., vol. 45, pp. 44–46, 2013.
[11] O. Kökkılıç, R. Langlois, y K. E. Waters, “A design of experiments investigation into dry separation using a Knelson Concentrator”, Miner. Eng., vol. 72, pp. 73–86, 2015.
[12] M. Zhou, O. Kökkılıç, R. Langlois, y K. E. Waters, “Size-by-size analysis of dry gravity separation using a 3-in . Knelson Concentrator”, Miner. Eng., vol. 91, pp. 42–54, 2015.
[13] C. Deveau, “Improving fine particle gravity recovery through equipment behaviour modification”, en 38th Annual Meeting of the Canadian Mineral Processors, 2006, pp. 501–518.
[14] J. S. Kroll-Rabotin, F. Bourgeois, y É. Climent, “Fluid dynamics based modelling of the Falcon concentrator for ultrafine particle beneficiation”, Miner. Eng., vol. 23, núm. 4, pp. 313–320, 2010.
[15] J. S. Kroll-Rabotin, F. Bourgeois, y É. Climent, “Experimental validation of a fluid dynamics based model of the UF Falcon concentrator in the ultrafine range”, Sep. Purif. Technol. J., vol. 92, pp. 129–135, 2012.
[16] J. S. Kroll-Rabotin, F. Bourgeois, y É. Climent, “Physical analysis and modeling of the Falcon concentrator for beneficiation of ultrafine particles”, Int. J. Miner. Process., vol. 121, pp. 39–50, 2013.
[17] E. G. Kelly y D. J. Spottiswood, Introducción al procesamiento de minerales, Primera ed. México D. F., México: Editorial Limusa, 1990.
[18] J. S. Kroll-Rabotin, “Analyse physique et modélisation de la séparation centrifuge de particules ultrafines en film fluant: application au séparateur industriel Falcon”, Ph.D. thesis, Institut National Polytechnique de Toulouse, Toulouse, France, 2010.
[19] S. Bruin, “Velocity distributions in a liquid film flowing over a rotating conical surface”, Chem. Eng. Sci., vol. 24, pp. 1647–1654, 1969.
[20] S. V. Makarytchev, “On modelling fluid flow over a rotating conical surface”, Chem. Eng. Sci., vol. 52, pp. 1055–1057, 1997.

Published

2022-06-30

How to Cite

[1]
J. M. Mamani-Quispe, “Development of a pneumatic centrifugal concentrator for the dry processing of ultrafine particles of auriferous minerals: design of the prototype”, TEC, vol. 32, no. 1, pp. 6–12, Jun. 2022.

Issue

Section

Mining and Geology Engineering