Development of an efficient 3D finite element mesh generation method for earthquake simulation in urban areas based on parallel Delaunay triangulation
DOI:
https://doi.org/10.21754/tecnia.v35i2.2513Palabras clave:
Mesh generation, Earthquake simulation, Finite element method, Digital twinsResumen
To estimate the impact of earthquakes in urban areas, researchers conventionally rely on simplified models of urban structures for simulations. However, recent advancements in technology enable more accurate earthquake response predictions through high-fidelity models and digital twins. Conventional mesh generation programs can produce general 3D models but are not optimized for large-scale urban simulations, where mesh refinement near material interfaces is essential. In this study, we developed an efficient Delaunay triangulation-based method for city-scale simulations by partitioning the 3D model into subdomains. The proposed method seamlessly uses information from digital elevation model and seismic velocity model. Using the proposed method on a shared-memory machine with 64 parallel processes, we generated a high-fidelity 3D urban model with tetrahedral elements and degrees of freedom (DOF) in 4.3 minutes. To demonstrate the applicability of the generated model, we conducted a large-scale wave propagation simulation using gQuake software, completing the computation in just 11.5 minutes. Results show that the proposed method significantly reduces mesh generation time for complex urban geometries, enhancing the efficiency of large-scale earthquake simulations.
Descargas
Citas
[1] J. Rudi et al., “An extreme-scale implicit solver for complex PDEs: highly heterogeneous flow in earth’s mantle,” in Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis, Austin Texas: ACM, Nov. 2015, pp. 1–12, doi: 10.1145/2807591.2807675.
[2] D. Komatitsch and J. Tromp, “Introduction to the spectral element method for three-dimensional seismic wave propagation,” Geophys. J. Int., vol. 139, no. 3, pp. 806–822, Dec. 1999, doi: 10.1046/j.1365-246x.1999.00967.x.
[3] D. Peter et al., “Forward and adjoint simulations of seismic wave propagation on fully unstructured hexahedral meshes: SPECFEM3D Version 2.0 ‘Sesame,’” Geophys. J. Int., vol. 186, no. 2, pp. 721–739, Aug. 2011, doi: 10.1111/j.1365-246X.2011.05044.x.
[4] T. Ichimura, M. Hori, and J. Bielak, “A hybrid multiresolution meshing technique for finite element three-dimensional earthquake ground motion modelling in basins including topography,” Geophys. J. Int., vol. 177, no. 3, pp. 1221–1232, Jun. 2009, doi: 10.1111/j.1365-246X.2009.04154.x.
[5] C. Marot and J.-F. Remacle, “Quality tetrahedral mesh generation with HXT,” Aug. 19, 2020, arXiv: arXiv:2008.08508. doi: 10.48550/arXiv.2008.08508.
[6] K. Fujita, K. Katsushima, T. Ichimura, M. Hori, and L. Maddegedara, “Octree-based Multiple-material Parallel Unstructured Mesh Generation Method for Seismic Response Analysis of Soil-Structure Systems,” Procedia Comput. Sci., vol. 80, pp. 1624–1634, 2016, doi: 10.1016/j.procs.2016.05.496.
[7] T. Ichimura, K. Fujita, R. Kusakabe, H. Fujiwara, M. Hori, and M. Lalith, “Development of an Estimation Method for the Seismic Motion Reproducibility of a Three-dimensional Ground Structure Model by combining Surface-observed Seismic Motion and Three-dimensional Seismic Motion Analysis,” vol. 14834, 2024, pp. 272–287. doi: 10.1007/978-3-031-63759-9_32.
[8] H. Fang, H. Yao, H. Zhang, Y.-C. Huang, and R. D. Van Der Hilst, “Direct inversion of surface wave dispersion for three-dimensional shallow crustal structure based on ray tracing: methodology and application,” Geophys. J. Int., vol. 201, no. 3, pp. 1251–1263, Jun. 2015, doi: 10.1093/gji/ggv080.
[9] F. Panzera, J. Alber, W. Imperatori, P. Bergamo, and D. Fäh, “Reconstructing a 3D model from geophysical data for local amplification modelling: The study case of the upper Rhone valley, Switzerland,” Soil Dyn. Earthq. Eng., vol. 155, p. 107163, Apr. 2022, doi: 10.1016/j.soildyn.2022.107163.
[10] M. Yerry and M. Shephard, “A Modified Quadtree Approach To Finite Element Mesh Generation,” IEEE Comput. Graph. Appl., vol. 3, no. 1, pp. 39–46, Jan. 1983, doi: 10.1109/MCG.1983.262997.
[11] J. Pascal, Mesh generation: Application to Finite Elements, Second. 2008.
[12] S. J. Owen, “A Survey of Unstructured Mesh Generation Technology,” 1998.
[13] T. Ichimura et al., “An elastic/viscoelastic finite element analysis method for crustal deformation using a 3-D island-scale high-fidelity model,” Geophys. J. Int., vol. 206, no. 1, pp. 114–129, Jul. 2016, doi: 10.1093/gji/ggw123.
[14] J. Palacios, “Recopilación y Digitalización de Información de Estructuras de Edificios en Zona Aledaña a la Sede Central de SENCICO para el Modelamiento 3D.” 2024. [Online]. Available: https://www.gob.pe/institucion/sencico/informes-publicaciones/6112998-aplicacion-experimental-piloto-de-metodologia-para-el-analisis-tridimensional-de-la-respuesta-sismica-del-suelo-en-zonas-urbanas
[15] GEORYS, “Geophysical Prospecting Tests on the Area Surrounding SENCICO’s Central Headquarters.” 2024. [Online]. Available: https://www.gob.pe/institucion/sencico/informes-publicaciones/6112998-aplicacion-experimental-piloto-de-metodologia-para-el-analisis-tridimensional-de-la-respuesta-sismica-del-suelo-en-zonas-urbanas
[16] J. Palacios, A. Tarrillo, K. Fujita, M. Diaz, C. Zavala, and I. Inocente, “Simulating Earthquake-induced Wave Prpagation with GPU-accelerated Computing,” in Proc. 18th World Conference on Earthquake Engineering, Milan, Italy, 2024.
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2025 TECNIA

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Los artículos publicados por TECNIA pueden ser compartidos a través de la licencia pública internacional Creative Commons: CC BY 4.0. Permisos lejos de este alcance pueden ser consultados a través del correo tecnia@uni.edu.pe







