The energy factor β and energy dissipation by hysteresis in the behavior of hybrid concrete walls under reversible cyclical lateral loads

Autores/as

DOI:

https://doi.org/10.21754/tecnia.v35i1.2457

Palabras clave:

hybrid wall, energy dissipation, numerical model, post-tensioned

Resumen

The energy dissipation of hybrid walls is calculated in the area of the hysteretic cycles produced in the movement under lateral loads, this magnitude is taken as an index of the damage in the structural system. In addition, ACI ITG 5.1 defines the energy factor β as a dimensionless measure of dissipation related to areas in hysteretic cycles. In hybrid walls the lateral load behavior is related to the "energy dissipators", formed by corrugated steel bars, placed through the joint between the precast wall and the foundation, another element in these walls is the prestressing steel cable, this cable is attached to the top of the wall and crosses it to the bottom of the foundation, and gives recentering to the wall. The configuration of the hybrid walls takes advantage of the mechanical characteristics of these two elements, controlling high displacements and with focused damage. A numerical model was validated to represent the response of the hybrid walls, using the experimental results of the HW1 and HW3 walls tested by Smith et al. (2012) and Rahman et al. (2000), respectively. With the validated numerical model and the β factor defined, a comparison of the energy dissipated by similar hybrid and conventional walls was performed. The results show that hybrid walls dissipate about 30% of the amount of energy dissipated by a conventional wall of similar characteristics.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

A. Abdollahi, Abouzar Jafari and Esmaeil Mohammadi, “Optimal energy dissipation ratio of base-rocking walls”. Journal of Building Engineering. Vol. 87. 2024.

ACI, “ACI ITG-5.1-07 Acceptance Criteria for Special Unbonded Post-Tensioned Precast Structural Walls Based on Validation Testing and Commentary.” ACI Innovation Task Group 5. Farmington Hills, MI. 2007.

ACI, “ACI ITG-5.2-09 Design of a Special Unbonded Post-Tensioned Precast Shear Wall Satisfying ACI ITG-5.1 Requirements.” ACI Innovation Task Group 5. Farmington Hills, MI. 2009.

ACI, “ACI 318-19 Building Code Requirements for Structural Concrete and Commentary.” ACI Committee 318, Farmington Hills, MI. 2019.

A. Gu, Y. Zhou, Y. Xiao, Q. Li and G. Qu, “Experimental study and parameter analysis on the seismic performance of self-centering hybrid reinforced concrete shear walls”. Soil Dynamics and Earthquake Engineering. Vol. 116. 2019.

A. M. Rahman, J. I. Restrepo, “Eartquake resistant precast concrete buildings: seismic performance of cantilever walls prestressed using unbonded tendons”. Research Report 2000-5. New Zealand. 2000.

A. Nilson, “Diseño de estructuras de concreto”, McGraw Hill Interamericana, Colombia. 2001.

B. Smith, Y. Kurama and McGinnis, “Hybrid Precast Wall Systems for Seismic Regions”. Report #NDSE-2012-01. University of Notre Dame. Notre Dame – Indiana. 2012.

CSI, “CSI Analysis Reference Manual for SAP2000, ETABS, and SAFE.” Computer and Structures, Inc. United States of America. 2017.

D. Xiuli, W. Zhenyu and L. Hongtao, “Numerical sudy of self-centering concrete wall system under cyclic loading”. Journal of Building Engineering. Vol. 41. 2021

H. M. Sina, A. Shooshtari, “Nonlinear static and dynamic behaviors assessment of self-centering post-tensioned concrete wall with multiple-slit device”. Journal of Building Engineering, Vol. 43. 2021.

H. Samith, A. Wijeyewickrema,“Seismic Performance Evaluation of Posttensioned Hybrid Precast Wall-Frame Buildings and Comparison with Shear Wall-Frame Buildings”. Journal of Structural Engineering. ASCE. ISSN 0733-9445. 2015.

J. Abouzar, S. Maedeh, J. A. Farshid and A. B. Habib, “Determining the optimal layout of energy-dissipating mechanisms for hybrid self-centering walls”. Structures. Vol. 60. 2024

J. Pampa, “Análisis no lineal de placas híbridas para mejorar la ductilidad de edificios menores de 5 pisos”, Universidad Nacional de Ingeniería, Tesis pregrado, jul. 2019.

J. Pampa, “Enfoque energético para el diseño de placas híbridas de concreto en zonas sísmicas”, Universidad Nacional de Ingeniería, Tesis postgrado, dic. 2023.

J. Pampa, M. Torres. “Enfoque energético para el diseño de muros híbridos de concreto en zonas sísmicas”. Revista Ingeniería Sísmica, 112. 2024.

J. B. Mander, M. J. N. Priestley, and R. Park, "Seismic design of bridge piers." Research Report No. 84-2, Univ. of Canterbury, New Zealand. 1984.

J. B. Mander, M. J. N. Priestley, and R. Park, “Theoretical stress-strain model for confined concrete”. Journal of Structural Engineering, Vol. 114. 1989.

M. El-Sheik, R. Sause, S. Pessiki and L. Lu, “Seismic behavior and design of unbonded post-tensioned precast concrete frames”, PCI Journal, Jun. 1999.

S. Hiatokis, “Repair and Strengthening of reinforced concrete shear walls for eartquake resistance using externally bonded carbon fibre sheets and a novel anchor system”, Carlenton University, Thesis of Máster. Ontario. Canada. 2004.

M.A Torres, J. Pampa, “Enfoque energético para el studio del comportamiento de muros híbridos de concreto ante cargas laterals cíclicas reversibles”. Revista de Ingeniería Sísmica, N0. 112 55-71. 2024.

W. Hao, Z. Xiaoying, Z. Ying, D. Abderrahim, C. Yue and K. Xiaojun, “Seismic fragility assessment of self-centering hybrid precast walls subject to mainshock-aftershock sequences”. Soil Dynamics and Earthquake Engineering. Vol. 150. 2021.

Descargas

Publicado

2025-07-16

Cómo citar

[1]
J. C. Pampa Vara y M. Ángel Torres Matos, «The energy factor β and energy dissipation by hysteresis in the behavior of hybrid concrete walls under reversible cyclical lateral loads», TECNIA, vol. 35, n.º 1, pp. 44–54, jul. 2025.

Número

Sección

Ingeniería Civil, Geotecnia y/o Sismoresistente

Artículos similares

<< < 4 5 6 7 8 9 10 11 12 13 > >> 

También puede Iniciar una búsqueda de similitud avanzada para este artículo.