Diseño e implementación de un medidor trifásico inteligente de energía eléctrica y armónicos

Autores/as

  • José Enrique Farfán Lira Facultad de Ingeniería Eléctrica y Electrónica, Universidad Nacional de Ingeniería, Lima, Perú https://orcid.org/0000-0003-0543-9816
  • Judith Luz Betetta Gómez Facultad de Ingeniería Eléctrica y Electrónica, Universidad Nacional de Ingeniería, Lima, Perú https://orcid.org/0000-0002-5674-1137
  • Johann Navarro Solano Facultad de Ingeniería Eléctrica y Electrónica, Universidad Nacional de Ingeniería, Lima, Perú
  • Bryam Raúl Armas Sedano Facultad de Ingeniería Eléctrica y Electrónica, Universidad Nacional de Ingeniería, Lima, Perú

DOI:

https://doi.org/10.21754/tecnia.v33i2.1659

Palabras clave:

medidor de energía, medición inteligente, armónicos, submuestreo, diseño de instrumento

Resumen

El presente trabajo se basa en el desarrollo de un dispositivo capaz de medir diversos parámetros relacionados con la tarificación y calidad de energía, de un suministro eléctrico de 220V trifásico y 60Hz, estos son: los valores eficaces y armónicos de las tensiones y corrientes del sistema trifásico, junto con sus respetivos desfasajes, la frecuencia del sistema y las potencias y energías trifásicas (tanto activa, reactiva y aparente). El presente dispositivo se basa en un microcontrolador ESP32 programado en lenguaje C++ el cual estará conectado inalámbricamente a la plataforma web mediante Wi-Fi para su lectura remota. El indicador externo para la medición de la energía activa es mediante las pulsaciones de un led a razón de 950 impulsos/kw-h. En el caso de la medición de armónicos el algoritmo aplica la transformada rápida de Fourier, o FFT por sus siglas en inglés, sobre un periodo de onda representativo obtenido por métodos de undersampling, o muestreo de baja velocidad, para elevar el rango de armónicos legibles. La validación de la medición de energía se realiza mediante la prueba de contraste detallada en la IEC 62053- 21, resultando el dispositivo diseñado de clase 1 y la validación de la lectura de los demás parámetros se realiza mediante comparación con un analizador de redes utilizando los criterios de aceptación de la norma IEC 61557-12 siendo también de clase 1, ambas pruebas realizadas en el laboratorio N°6 de electricidad de la UNI.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Enel Distribución Perú S.A.A., “Memoria Anual Integrada 2022.” Lima, Perú, 2022.

Instituto Nacional de Calidad, Procedimiento para la verificación de medidores estáticos de energía eléctrica activa clase 0,2 s; 0,5 s; 1; 2 y medidores electromecánicos de energía eléctrica activa clase 2, Perú, 2016.

N. E. Huiman, “Diseño e implementación de una red de medidores de energía para artefactos domésticos,” Tesis de Bachiller, Pontificia Universidad Católica del Perú, Lima, 2018. [En línea]. Disponible: http://hdl.handle.net/20.500.12404/11748

Ministerio de Energía y Minas, “Guía de orientación para la selección de la tarifa eléctrica a usuarios finales en baja tensión,” Lima, 2011.

E. O’Driscoll and G. E. O’Donnell, “Industrial power and energy metering – a state-of-the-art review,” J Clean Prod, vol. 41, pp. 53–64, 2013, doi: https://doi.org/10.1016/j.jclepro.2012.09.046

K. Hakpyeong, et al., “A systematic review of the smart energy conservation system: From smart homes to sustainable smart cities,” Renewable and Sustainable Energy Reviews, vol. 140, 2021, doi: 10.1016/j.rser.2021.110755

T. Khalifa, K. Naik, and A. Nayak, “A Survey of Communication Protocols for Automatic Meter Reading Applications,” IEEE Communications Surveys & Tutorials, vol. 13, no. 2, pp. 168–182, 2011, doi: 10.1109/SURV.2011.041110.00058

S. Roy, B. Bedanta, and S. Dawnee, “Advanced Metering Infrastructure for real time load management in a smart grid,” en 2015 International Conference on Power and Advanced Control Engineering (ICPACE), 2015, pp. 104–108. doi: 10.1109/ICPACE.2015.7274926.

A. Omitaomu and H. Niu, “Artificial Intelligence Techniques in Smart Grid: A Survey,” Smart Cities, vol. 4, pp. 548–568, 2021.

A. Marin. “Seal beneficiará a más de 7 mil usuarios con medidores inteligentes en Arequipa.” Peruenergia. Consultado Ag. 2023. [En línea]. Disponible: https://peruenergia.com.pe/seal-beneficiara-a-mas-de-7-mil-usuarios-con-medidores-inteligentes-en-arequipa/

Enel. “Enel inició la instalación del segundo piloto de medidores inteligentes en Lima y Callao.” Enel Perú. Consultado Ag. 2023. [En línea]. Disponible: https://www.enel.pe/es/conoce-enel/prensa/press/d202111-enel-inicio-la-instalacion-del-segundo-piloto-de-medidores-intel.html

K. Ehrhardt-Martinez, K. Donnelly, and J. Laitner, “Advanced Metering Initiatives and Residential Feedback Programs: A Meta-Review for Household Electricity-Saving Opportunities,” American Council for an Energy Efficient Economy, Washington, USA, Rep. E105, 2010.

S. Wilhelm and J. Kasbauer, “Exploiting Smart Meter Power Consumption Measurements for Human Activity Recognition (HAR) with a Motif-Detection-Based Non-Intrusive Load Monitoring (NILM) Approach,” Sensors, vol. 21, no. 23, 2021, doi: 10.3390/s21238036.

J. Driesen et al., “Development of a Measurement System for Power Quantities in Electrical Energy Distribution Systems,” en IEEE Instrumentation and Measurement Technology Conference Anchorage, AK, USA, 2002, pp. 21–23.

R. Jaiswal, et al., “Anomaly Detection in Smart Meter Data for Preventing Potential Smart Grid Imbalance,” en Proceedings of the 2021 4th Artificial Intelligence and Cloud Computing Conference, in AICCC ’21. New York, NY, USA: Association for Computing Machinery, 2022, pp. 150–159. doi: 10.1145/3508259.3508281.

S. C. Yip, et al., “Detection of energy theft and defective smart meters in smart grids using linear regression,” International Journal of Electrical Power & Energy Systems, vol. 91, pp. 230–240, Ag. 2017, doi: 10.1016/j.ijepes.2017.04.005

International Electrotechnical Commission. “IEC 61557-12 Electrical safety in low voltage distribution systems up to 1 000 V a.c. and 1 500 V d.c. — Equipment for testing, measuring or monitoring of protective measures — Part 12: Performance measuring and monitoring devices (PMD)”. Webstore, IEC. Consultado: Feb. 2023. [En línea]. Disponible: https://webstore.iec.ch/publication/69019

International Electrotechnical Commission. “IEC 62053-21 Electricity metering equipment – Particular requirements – Part 21: Static meters for AC active energy (classes 0,5, 1 and 2).” Webstore, IEC. Consultado: Feb. 2023. [En línea]. Disponible: https://webstore.iec.ch/publication/28660

Schneider Electric. “Medidor de montaje en panel PowerLogic ION7410 - pantalla puerto óptico y 2 pulsos,” https://anyoelectric.com/mpw_file/varios/t_productos_hoja_tecnica_medidor_de_montaje_6220fe.pdf

ABB, “Medidores M1M 15, M1M 20 and M1M 30,” https://new.abb.com/docs/librariesprovider78/argentina/electrification/arabb-m1m_rev2020-11.pdf?sfvrsn=22e91c17_2

B. Wu, N. Tan, and X. Yu, “An Energy Metering Chip With a Flexible Computing Engine,” IEEE Access, vol. 7, pp. 46351–46362, 2019, doi: 10.1109/ACCESS.2019.2909435.

International Electrotechnical Commission. “IEC 61000 Electromagnetic compatibility (EMC) - Part 4-30: Testing and measurement techniques - Power quality measurement methods.”. Webstore, IEC. Consultado: Feb. 2023. [En línea]. Disponible: https://webstore.iec.ch/publication/68642

L. J. Muñoz, “Diseño de un medidor de consumo de energía eléctrica en redes industriales y domésticas, basado en la adquisición y digitalización de señales para el monitoreo y análisis de la calidad de energía,” Tesis de Bachiller, Universidad San Martin de Porres, Lima, 2014. [En línea]. Disponible: https://hdl.handle.net/20.500.12727/3231

J. A. Echeverri and J. L. Patiño, “Sistema Inteligente de monitoreo de consumo eléctrico (SIMCE),” Universidad Tecnológica de Pereira, Pereira, Colombia, 2018. [En línea]. Disponible: https://hdl.handle.net/11059/9426

F. K. Handhal and A. T. Rashid, “A prototype Design for Three Phase Smart Energy Meter,” en 2017 Second Al-Sadiq International Conference on Multidisciplinary in IT and Communication Science and Applications (AIC-MITCSA), 2017, pp. 262–267, doi: 10.1109/AIC-MITCSA.2017.8722989

C. Venugopal, T. Govender, and B. Thangavel, “Load Analysis and Energy Management for Residential System Using Smart Meter,” en 2020 2nd International Conference on Electrical, Control and Instrumentation Engineering (ICECIE), 2020, pp. 1–8, doi: 10.1109/ICECIE50279.2020.9309554

Syafii, A. Luthfi, and A. Y. A. Rozzi, “Design of raspberry pi web-based energy monitoring system for residential electricity consumption,” en 2020 International Conference on Information Technology Systems and Innovation, ICITSI 2020 - Proceedings, Institute of Electrical and Electronics Engineers Inc., Oct. 2020, pp. 192–196, doi: 10.1109/ICITSI50517.2020.9264926

N. Ashokkumar, V. Arun, S. Prabhu, V. Kalaimagal, D. Srinivasan, and B. Shanthi, “Design and Implementation of IoT based Energy Efficient Smart Metering System for Domestic Applications,” en 2023 9th International Conference on Advanced Computing and Communication Systems (ICACCS), 2023, pp. 1208–1212, doi: 10.1109/ICACCS57279.2023.10113012

A. Othman and N. H. Zakaria, “Energy Meter based Wireless Monitoring System using BLYNK Application via smartphone,” en IEEE International Conference on Artificial Intelligence in Engineering and Technology, IICAIET 2020, Institute of Electrical and Electronics Engineers Inc., Sep. 2020, doi: 10.1109/IICAIET49801.2020.9257827

Mayur Pimple, Suraj Thopate, Avdhut Nikam, and Santosh Gadekar, “IOT Based Smart Energy Meter Using ESP 32,” en 3rd International Conference on Communication and Information Processing (ICCIP-2021), 2021.

S. Yıldız and M. Burunkaya, “Web Based Smart Meter for General Purpose Smart Home Systems with ESP8266,” en 2019 3rd International Symposium on Multidisciplinary Studies and Innovative Technologies (ISMSIT), 2019, pp. 1–6, doi: 10.1109/ISMSIT.2019.8932931

W. Hlaing, et al., “Implementation of WiFi-based single phase smart meter for Internet of Things (IoT),” en 2017 International Electrical Engineering Congress (iEECON), 2017, pp. 1–4, doi: 10.1109/IEECON.2017.8075793

M. Shaiful, “Smart home meter reading using IoT with BLYNK app,” en 5th International Conference on Green Design and Manufacture (IConGDM 2019), 2019. doi: 10.1063/1.5118117

P. A. Chandra, et al., “Automated energy meter using WiFi enabled raspberry Pi,” en 2016 IEEE International Conference on Recent Trends in Electronics, Information & Communication Technology (RTEICT), 2016, pp. 1992–1994. doi: 10.1109/RTEICT.2016.7808186

R. Sheeba et al., “Real-time Monitoring of Energy Meters Using Cloud Storage,” en 2021 IEEE International Power and Renewable Energy Conference (IPRECON), 2021, pp. 1–5. doi: 10.1109/IPRECON52453.2021.9640636

A. R. Salunke and N. M. Gaurkar, “Robotized electric meter reading and monitoring system utilizing ZigBee-integrated Raspberry pi,” en 2017 IEEE International Conference on Electrical, Instrumentation and Communication Engineering (ICEICE), 2017, pp. 1–4. doi: 10.1109/ICEICE.2017.8191928

G. Spasov, et al., “A Smart Solution for Electrical Power Monitoring Based on MCP39F501 Sensor,” en 2019 XXVIII International Scientific Conference Electronics (ET), Sozopol, Bulgaria, 2019, doi: 10.1109/ET.2019.8878502

T. Shahzad Gill, et al., “IoT Based Smart Power Quality Monitoring and Electricity Theft Detection System,” en 2021 16th International Conference on Emerging Technologies (ICET), 2021, pp. 1–4. doi: 10.1109/ICET54505.2021.9689908

H. Nyquist, “Certain Topics in Telegraph Transmission Theory,” Transactions of the American Institute of Electrical Engineers, vol. 47, no. 2, pp. 617–644, 1928, doi: 10.1109/T-AIEE.1928.5055024

H. Lev-Ari, A. M. Stankovic, and S. Lin, “Application of staggered undersampling to power quality monitoring,” IEEE Transactions on Power Delivery, vol. 15, no. 3, pp. 864–869, 2000, doi: 10.1109/61.871345

J. W. Cooley and J. W. Tukey, “An algorithm for the machine calculation of complex Fourier series,” Math Comput, vol. 19, no. 90, pp. 297–301, 1965, doi: 10.1090/S0025-5718-1965-0178586-1

Descargas

Publicado

2023-12-06

Cómo citar

[1]
J. E. Farfán Lira, J. L. Betetta Gómez, J. Navarro Solano, y B. R. Armas Sedano, «Diseño e implementación de un medidor trifásico inteligente de energía eléctrica y armónicos», TECNIA, vol. 33, n.º 2, pp. 39–52, dic. 2023.

Número

Sección

Energía renovables, ingeniería eléctrica y/o sistemas de potencia