Thermal-energy characterization of a 3.3 kwp photovoltaic system interconnected to the electricity grid: 2015-2019

Authors

  • Carlos Polo Bravo Centro de Energías Renovables de Tacna (CERT, Departamento Académico de Física, Facultad de Ciencias, Universidad Nacional Jorge Basadre Grohmann, Tacna, Perú
  • Yosimar Cohaila Mayta Centro de Energías Renovables de Tacna (CERT, Departamento Académico de Física, Facultad de Ciencias, Universidad Nacional Jorge Basadre Grohmann, Tacna, Perú
  • Hugo A. Torres Muro Centro de Energías Renovables de Tacna (CERT, Departamento Académico de Física, Facultad de Ciencias, Universidad Nacional Jorge Basadre Grohmann, Tacna, Perú
  • Alessandro De La Gala Contreras Centro de Energías Renovables de Tacna (CERT, Departamento Académico de Física, Facultad de Ciencias, Universidad Nacional Jorge Basadre Grohmann, Tacna, Perú

DOI:

https://doi.org/10.21754/tecnia.v21i1.1315

Keywords:

grid connection, energy production, photovoltaic system, temperature

Abstract

The thermal and energetic results obtained under monitoring of a 3,3 KWp photovoltaic solar system interconnected to the electrical grid of the Faculty of Sciences of the Jorge Basadre Grohmann National University of Tacna (UNJBG), Peru are presented; located at a southern latitude of 17,35 °, longitude 72 ° W and height of 525 meters above sea level in the period 2015-2019. The system generates electrical energy at 340 V DC, which with an inverter transforms it to 220 VAC, 60 Hz which is delivered to the electricity grid of the University City. The photovoltaic system is made up of twelve panels of 275 Wp and 1,65 m 2 each, oriented to the north with a south inclination of 19,5 °, zero azimuth and installed under an architecture that allows the temperature to be automatically monitored and recorded every 15 seconds of the panel, environment and solar irradiance on the plane of the panels, electrical parameters in direct (DC) and alternating (AC) voltage, during one year the data available is 365 files of 5760 rows x 16 columns, characterized under the meteorological conditions of the city of Tacna. The system is connected to the Internet, so that the data can be monitored and transferred from anywhere that has the resource. For the period January 2015 to December 2019, it has generated 25670 KWh of electric energy in alternating voltage at 220 V, 60 Hz frequency, reaching its maximum energy production months between october to march of 542, while
between April and September decreased to a minimum value of 228 in June, representing a difference of 42,07%; which has meant for the UNJBG a savings in electrical energy consumption of $ 779 per year. The average annualized efficiency of the system is 13,75%. The temperature of the modules in monthly interannual average varies between maximum values ​​of 42,9 ° C and minimum of 28,6° C, while the maximum instantaneous values ​​of the panel surface of 51,3 ° C in January (summer) and the minimum of 41,8 ° C in June (winter), for maximum environmental temperature changes between 30,1 and 20,5 ° C, respectively.

Downloads

Download data is not yet available.

References

[1] I. Nawaz, y G. N. Tiwari, “Embodied energy analysis of photovoltaic (PV) system based on macro- and micro-level”, Energy Policy, vol. 34, no. 17, pp. 3144–3152, nov. 2006.
[2] G. Masson, “Global Market Outlook for Solar Power: 2015 – 2019”, Solar Power Europe, Belgium, 2015.
[3] M. Sidrach-de-Cardona y Ll. Mora López, “Performance analysis of a grid-connected photovoltaic system”, Energy, vol. 24, no.2, pp. 93–102, feb. 1999.
[4] J. P. Vargas, B. Goss, and R. Gottschalg, “Large scale PV systems under non-uniform and fault conditions”, Sol. Energy, vol. 116, pp. 303–313, jun. 2015.
[5] OSINERGMIN. (2019). Información del Proyecto RER. Available: https://srvgart.osinergmin.gob.pe/sisrer-web/proyectoController/rer_subasta
[6] M. Cucumo et al., “Performance analysis of a 3 kW grid-connected photovoltaic plant”, Renew. Energy, vol. 31, no. 8, pp. 1129–1138, jul. 2006.
[7] C. Polo, “Potencial energético solar y su impacto ambiental sobre la región Tacna”, Tesis de maestría, Escuela de Posgrado, UNJBG, Tacna, 2013.
[8] L. Muñoz, Energía Solar Fotovoltaica. Universidad Politécnica de Cataluña, España, 1994.
[9] E. Lorenzo et al., Electricidad Solar: Ingeniería de los Sistemas Fotovoltaicos. Ed. Progensa, España, 1994.
[10] J. C. Hernández y A. Medina, “Conexión de sistemas fotovoltaicos a la red eléctrica: calidad de suministro”, SUMUNTÁN, no. 23, pp. 33–44, 2006.
[11] R. González, “Sistemas fotovoltaicos conectados a la red”, Boletín IIE, México, 2003.
[12] S. Messina et al., “Comparative Study of System Performance of Two 2.4 kW Grid-connected PV Installations in Tepic-Nayarit and Temixco-morelos in México”, Energy Procedia, vol. 57, pp. 161–167, 2014.
[13] R. Espinoza et al., “Feasibility evaluation of residential photovoltaic self-consumption projects in Peru”, Renew. Energy, vol. 136, pp. 414–427, 2019.
[14] M. Tinajeros et al., “Evaluación del desempeño de un sistema fotovoltaico conectado a red de 3,3 KW en la ciudad de Arequipa”, en XXII Simposio Peruano de Energía Solar y del Ambiente, Arequipa, 2015.
[15] E. Kymakis, S. Kalykakis, y T. M. Papazoglou, “Performance analysis of a grid connected photovoltaic park on the island of Crete”, Energy Convers. Manag., vol. 50, no. 3, pp. 433–438, mar. 2009.

Published

2021-06-22

How to Cite

[1]
C. Polo Bravo, Y. Cohaila Mayta, H. A. Torres Muro, and A. De La Gala Contreras, “Thermal-energy characterization of a 3.3 kwp photovoltaic system interconnected to the electricity grid: 2015-2019”, TEC, vol. 31, no. 1, pp. 67–76, Jun. 2021.

Issue

Section

Solar and photovoltaic energy