The Feynman Matrix of the Harmonic Oscillator

Authors

  • José Reyes-Portales Facultad de Ciencias, Universidad Nacional de Ingeniería. Lima, Perú
  • Holger Valqui Facultad de Ciencias, Universidad Nacional de Ingeniería. Lima, Perú

Keywords:

Feynman path integrals, propagator, Green's function, harmonic oscillator

Abstract

The Schrödinger equation allows to determine the state of a physical system, SF, at any instant t, expressed by a wave function \psi_t when the state \psi_{t_0} of the SF at a previous instant t_o < t is known. Feynman invented another way to determine \psi_t from a previous state \psi_{t_0}, resorting to the classical Lagrangian of the SF. This classical Lagrangian allows to construct a matrix K(t, t_o), such that psi_t = K(t,t_o)\psi_{t_0} . The construction of the matrix K(t, t_o); that is, of its elements K(t, x; t_o, x_0) = K(t,t_0)_{xx_0} requires a very special integration process that is only analytically feasible in a few cases, such as that of the free particle and the harmonic oscillator. Here, after introductory considerations, we present the details of the analytical calculation of the Feynman matrix for the harmonic oscillator.

Downloads

Download data is not yet available.

References

R. Feynman A. Hibbs, quantum MEchanics and Path Integral Mc Graw-Hill, 1965.

H.G. Valqui, El problema de la integral de Feynman, Revciuni, volumen 1, número 1, junio 1995.

Arfken, MAthematical Methods for Physicists.

R.P. Feynman, Statical Mechanics a set of lectures.

Published

2006-06-01

How to Cite

Reyes-Portales, J., & Valqui, H. (2006). The Feynman Matrix of the Harmonic Oscillator. Journal of the Science Faculty @ UNI, 10(1), 6–12. Retrieved from https://revistas.uni.edu.pe/index.php/revciuni/article/view/2407

Issue

Section

Artículos