Volatility modeling in the Peruvian stock market

Authors

  • Carlos Abanto Valle Institute of Mathematics, Federal University of Rio de Janeiro, Rio de Janerio, Brazil

DOI:

https://doi.org/10.21754/iecos.v4i0.1150

Keywords:

Heteroscedasticity, GARCH, EGARCH, Gibbs algorithm, Metropolis-Hastings algorithm, DIC criterion

Abstract

This article begins with an introduction to the literature on time-varying volatility models and briefly addresses the Bayesian implementation of the ARCH/GARCH/EGARCH class of models. Likewise, an application using the return series of the Return Index of the Lima Stock Exchange (IBVL) is presented and, finally, different specifications of the GARCH/EGARCH class of models are compared using the DIC criterion.

Downloads

Download data is not yet available.

References

Baillie, R. T., & Bollerslev, T. (1989). The message in daily exchange rates: A conditional variance-tale. Journal of Business and Economic Statistics, 7(3), 297-305. https://doi.org/10.1080/07350015.1989.10509637

Bollerslev, T. (1986). Generalized autoregressive conditional heteroskedasticity. Journal of Econometrics, 31(3), 307-327. https://doi.org/10.1016/0304-4076(86)90063-8

Bollerslev, T. (1987). A conditionally heteroskedastic time series model for speculative prices and rate of return. The Review of Economics and Statistics, 31(3), 301-327. https://doi.org/10.2307/1925561

Bollerslev, T., Chow, R., & Kroner, K. (1992). ARCH modelling in finance: A review of the theory and empirical evidence. Journal of Econometrics, 52(1-2), 5-59. https://doi.org/10.1016/0304-4076(92)90064-S

Bollerslev, T., Engle, R., & Nelson, D. (1994). ARCH models. En R. F. Engle & D. L. McFadden (Eds.), The Handbook of Econometrics (Vol. 4, pp. 2961-3038). North-Holland: Elsevier Science Publishers B.V.

Cowles, M. K., & Carlin, B. P. (1996). Markov Chain Monte Carlo convergence diagnostics: A comparative review. Journal of the American Statistical Association, 91(434), 883-904. https://doi.org/10.1080/01621459.1996.10476931

Engle, R. (1982). Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation. Econometrica, 50(4), 987-1007. https://doi.org/10.2307/1912773

Gamerman, D., & Lopes, H. F. (2006). Markov Chain Monte Carlo: Stochastic simulation for Bayesian inference (2nd ed.). Chapman & Hall.

Meyer, R., & Yu, J. (2000). BUGS for Bayesian stochastic volatility models. The Econometrics Journal, 45(1), 239-265. https://doi.org/10.1111/j.1368-423X.2000.00054.x

Nelson, D. (1991). Conditional heteroscedasticity in asset returns: A new approach. Econometrica, 59(2), 347-370. https://doi.org/10.2307/2938260

Vrontos, I. D., Dellaportas, P., & Politis, D. N. (2000). Full Bayesian inference for GARCH and EGARCH models. Journal of Business and Economic Statistics, 18(2), 187-198. https://doi.org/10.2307/1392174

Published

2007-09-01

How to Cite

Abanto Valle, C. (2007). Volatility modeling in the Peruvian stock market. Revista IECOS, 4, 71–83. https://doi.org/10.21754/iecos.v4i0.1150

Issue

Section

Research Articles