Absolute and relative changes in the consumer price index

Authors

  • José Cerda Hernández Facultad de Ingeniería Económica, Estadística y Ciencias Sociales, Universidad Nacional de Ingeniería, Lima, Perú https://orcid.org/0000-0002-9297-5694
  • J. Fernández-Villarreal Facultad de Ingeniería Económica, Estadística y Ciencias Sociales, Universidad Nacional de Ingeniería, Lima, Perú

DOI:

https://doi.org/10.21754/iecos.v21i1.1078

Keywords:

Factor decomposition, Kalman filter, core inflation, principal components analysis

Abstract

This work estimates a dynamic factor decomposition for Peruvian inflation, using monthly disaggregated data from the consumer price index of Metropolitan Lima from January 2000 to December 2019. One of the objectives of macroeconomics is to explain the aggregate sources of changes in the prices of goods in an economy. This model makes it possible to identify idiosyncratic relative prices, aggregate relative prices and absolute prices, which represent the supply and demand shocks that can appear in an economy. The component common to all items of the CPI serves as an alternative measure of core inflation, and our results show that this component is highly correlated with core inflation published by the BCRP. In general, the results obtained in the present work are robust for different intertemporal dependency structures for the factors considered. This work estimates a dynamic factor decomposition for Peruvian inflation, using monthly disaggregated data from the consumer price index of Metropolitan Lima from January 2000 to December 2019. One of the objectives of macroeconomics is to explain the aggregate sources of changes in the prices of goods in an economy. This model makes it possible to identify idiosyncratic relative prices, aggregate relative prices and absolute prices, which represent the supply and demand shocks that can appear in an economy. The component common to all items of the CPI serves as an alternative measure of core inflation, and our results show that this component is highly correlated with core inflation published by the BCRP. In general, the results obtained in the present work are robust for different intertemporal dependency structures for the factors considered.

Downloads

Download data is not yet available.

References

Armas A., Vallejos L., Vega M., Indicadores tendenciales de inflación y su relevancia como variables indicativas de
Armas, A., L. Vallejos y M. Vega (2011). Indicadores tendenciales de inflación y su relevancia como variables indicativas de política monetaria. Banco Central de Reserva del Perú, Revista Estudios Econo ́micos, 20, 27-56.
Bai, J. (2003) Inferential theory for factor models of large dimensions. Econometrica, 71, 135-71.
Bai, J. and Ng S. (2007) Determining the number of pri- mitive shocks in factor models. Journal of Business and Economic Statistics, 25, 52-60.
Bai, J. and Ng, S. (2002) Determining the number of fac- tors in approximate factor models. Econometrica, 70, 191- 221.
Bai,J.(2004)Estimating cross-section common stochastic trends in nonstationary panel data. Journal of Econome- trics, 122, 137-83.
Bollerslev T., Generalized autoregressive conditional hete- roskedasticity. Journal of Econometrics. Vol. 31, Pag 307- 327 (1986).
Bryan, M. F. and Cechetti, S. G. (1993) The consumer price index as a measure of inflation. Federal Reserve Bank of Cleveland Economic Review, 29, 15-24.
Chan, J. C., Koop, G and Potter, S. M. (2013). A new model of trend inflation. Journal of Business and Econo- mic Statistics 31, 94-106.
Clark, T. E. and Doh, T. (2014), Evaluating alternative models of trend inflation. International Journal of Fore- casting 30, 426-448.
Engle R.Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom In- flation. Econometrica. Vol. 50, Pag 987-1007 (1982).
Evans, M. (1991), Discovering the link between inflation Rates and inflation Uncertainty. Journal of Money, Credit and Banking 23, 169-184.
Faust, J and Wright J. (2011). Forecasting inflation. Ma- nuscript, Johns Hopkins University.
Friedman,M.(1976),InflationandUnemployment.Nobel memorial lecture.
Harvey A. C., Forecasting, Structural Time Series Models and the Kalman Filter. Cambridge University Press (1989).
Humala A. y G. Rodr ́ıguez (2012), A factorial decomposi- tion of inflation in Peru: An alternative measure of core inflation. Applied Economics Letters, 19(14), 1331-1334.
Mishkin, F. (2007). Inflation Dynamics. International Finance, 10(3), 317-334.
Modelo de Proyección Trimestral del BCRP. Banco Central de Reserva del Perú, Documento de Trabajo DT. N 2009-006.
Phillips A. William The relation between unemployment and the rate of change of money wage rates in the United Kingdom. Económica 25(100), (January 1958).
Phillips, P. C. B. y D. Sul (2007a), Transition modeling and econometric convergence tests. Econometrica, 75(6), 1771-1855.
Ramos M., Winkelried D. Tendencias comunes en el índice de precios al consumidor. Banco Central de Reserva del Perú. Revista Estudios Económicos 31, 29 - 44 (2016).
Reis, R. and Watson, M. W. (2007) Relative goods’ prices, pure inflation and the Phillips correlation. American Economic Journal: Macroeconomics, 2, 128-57.
Rodriguez, G. (2010), Estimating Output Gap, Core Inflation, and the NAIRU for Peru ́. Applied Econometrics and International Development 10(1), 149-160.
Rossini R.,Vega M.Quispe Z., Perez F. Expectativas de inflación y dolarización en el Perú. Banco Central de Reserva del Perú. Revista Estudios Económicos 31, 71 - 84 (2016).
Samuelson, P.A. and R. Solow (1960), Analytical Aspects of Anti-Inflation Policy. American Economic Review Pa- pers and Proceedings 50(2), 177-194.
Samuelson, Paul Anthony. Reflections on Monetary Policy. The Review of Economics and Statistics, 42(3): 263- 269 (1960).
Solow, Robert M. A Policy for Full Employment. Industrial Relations: A Journal of Economy and Society, 2(1): 1-14 (1962).
Stock, J. H. and M. Watson (2007), Why has U.S. Inflation become harder to forecast? Journal of Money, Credit and Banking 39, 30-33.

Stock, J. H. and Watson, M. W. (2002) Forecasting using principal components from a large number of predictors. Journal of the American Statistical Association, 97, 1167- 79.

Published

2020-11-13

How to Cite

Cerda Hernández, J., & Fernández-Villarreal, J. (2020). Absolute and relative changes in the consumer price index. Revista IECOS, 21(1), 33–55. https://doi.org/10.21754/iecos.v21i1.1078

Issue

Section

Research Articles