Application of state space models to model unemployment rate data in Metropolitan Lima

Authors

DOI:

https://doi.org/10.21754/iecos.v21i1.1077

Keywords:

Unemployment rate, state space model, basic structure model, trend, Kalman filter, sampling, Horvitz-Tompson estimator

Abstract

The dynamics of the unemployment rate over time reflects the performance of the labor market, one of the most important determinants of well-being in any economy. The unemployment rate is one of the main indicators used to analyze the prosperity and economic situation of a country, and also allows analyzing the economy from two perspectives: the first from the supply side and from the demand side. In this research we are going to analyze the dynamics of unemployment in Metropolitan Lima.
For this purpose, we will use the data from the Permanent Employment Survey - EPE from 2002 to 2018 to calculate the monthly unemployment rates. We are interested in studying the development dynamics of the unemployment rate in Metropolitan Lima, and also in comparing the development dynamics of
the said rate in different cones, men and women, and also the dynamics in different age groups. The main objective of our research is to study the dynamics of unemployment rates in different social groups to identify possible problems of inequality of opportunities in the same groups, and to explain the economic and social roots that generate this inequality. To estimate the monthly unemployment rates and their respective variances we use the Horvitz-Tompson estimator. To analyze the dynamics of the series we adjust the basic structure model, which is a special case of state space models.

Downloads

References

Arango, L. & Posada, C. (2013). El Desempleo en Colombia. Banco de la República. Recuperado de https://www.banrep.gov.co/docum/ftp/borra265pdf.pdf

Arango, L. & Ros, A. (2015). Duración del desempleo en Colombia: género, intensidad de búsqueda y anuncios de vacantes. Banco de la Reserva- Colombia. Borradores de economía. N866. Recuperado de https://publications.iadb.org/es/publicacion/13851/duracion-del-desempleo-en-colombia-genero-intensidad-de-busqueda-y-anuncios-de

Ball, L., De Roux, N. & Hofstetter, M. (2011). Unemployment in Latin America and the Caribbean. International Monetary Fund. Recuperado de https://www.elibrary.imf.org/view/journals/001/2011/252/article-A001-en.xml

Belapatiño, V., Cespedes, N. & Gutierrez, A. (2014). La duración del desempleo en Lima Metropolitana. Revista Estudios Económicos. Banco Central de Reserva del Perú. Recuperado de https://www.bcrp.gob.pe/docs/Publicaciones/Revista-Estudios-Economicos/27/ree-27-cespedes-gutierrez.pdf

Bellani, D., Garca, P. & Pasten E. (2002).Curva de Beveridge, vacantes y desempleo: Chile 1996.I-2002.II.Banco central de Chile Documentos de trabajo (191). Recuperado de https://www.bcentral.cl/documents/33528/133326/bcch_archivo_167954_es.pdf/e43da653-8889-7955-9896-959728f9f653?t=1573282942020

Contreras, S., Pino O., & Pizzinga A.(2006). Aplicación de la metodología espacio estado en el análisis de las series de desempleo: Caso región del Bío-Bío. Theoría 25(1). Chile: Universidad del Bío Bío: Recuperado de https://www.redalyc.org/pdf/299/29915107.pdf

Contreras-Reyes, Javier, & Idrovo, Byron. (2011). En busca de un modelo benchmark univariado para predecir la tasa de desempleo de chile. Cuadernos de Economía, 30(55), 105-125. Retrieved May 10, 2021, Recuperado de http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0121-47722011000200006&lng=en&tlng=es

Durbin, J., & Quenneville, B. (1997). Benchmarking by State Space Models. International Statistical Review / Revue Internationale De Statistique, 65(1), 23-48. doi:10.2307/1403431.

Harvey, A. (1990). Forecasting, Structural Time Series Models and the Kalman Filter. Cambridge: Cambridge University Press. doi:10.1017/CBO9781107049994

Judzik, D. & Mateos, N. (2017).Sobre los determinantes de la tasa de desempleo en Argentina (2003-2015). Pontificia Universidad Católica Argentina, Facultad de Ciencias Humanas. Recuperado de https://repositorio.uca.edu.ar/handle/123456789/9975

Lasso, F. (2013). La dinámica del desempleo urbano en Colombia. Recuperado de https://www.banrep.gov.co/es/borrador-667

Lasso, F. & Zarate, H. (2019). Pronosticar la tasa de desempleo colombiana utilizando los flujos de la fuerza laboral. Banco de la Reserva-Colombia: Borradores de economía. N1073. Recuperado de http://doi.org/10.32468/be.1073

Marchionni, M., Gasparini, L., & Edo, M. (2019). Brechas de género en América Latina. Un estado de situación. Caracas: CAF. Retrieved from http://scioteca.caf.com/handle/123456789/1401

Restrepo, J. (2008). Estimaciones de la NAIRU para Chile. Banco Central de Chile. Recuperado de https://www.cemla.org/PDF/ic/2008-ic/IC-16.pdf

Centro de Investigación y Desarrollo (INEI/CIDE). (2001). ¿Qué sabemos sobre el desempleo en el Perú?. Recuperado de https://www.inei.gob.pe/media/MenuRecursivo/publicaciones_digitales/Est/Lib0489/Libro.pdf

Organización Internacional del Trabajo (2013). Modelo de Proyección de Empleo para el Perú. Lima: OIT/ Oficina de la OIT para los países Andinos, 1a ed. Recuperado de https://www.ilo.org/wcmsp5/groups/public/---americas/---ro-lima/---sro-lima/documents/publication/wcms_236122.pdf

Published

2020-11-13

How to Cite

Sikov, A. (2020). Application of state space models to model unemployment rate data in Metropolitan Lima. Revista IECOS, 21(1), 7–32. https://doi.org/10.21754/iecos.v21i1.1077

Issue

Section

Research Articles