Producción científica del Instituto Peruano de Energía Nuclear en 50 años de existencia
DOI:
https://doi.org/10.21754/iecos.v26i1.2489Palabras clave:
Instituto Peruano de Energía Nuclear, Física Nuclear, NeutrografíaResumen
Cincuenta años después de su fundación, se analiza la producción científica del Instituto Peruano de Energía Nuclear (IPEN), cuya infraestructura incluye como pieza central el reactor de investigación RP-10, un reactor de 10 MW que actúa como fuente de rayos neutrónicos. Para esta evaluación, se utiliza la base de datos bibliográfica Scopus, reconocida por el CONCYTEC para medir la producción científica en el Perú. Desde sus inicios, el IPEN ha desarrollado investigaciones en fisión nuclear, geología del uranio, neutrónica y aplicaciones del análisis químico mediante activación neutrónica y huellas de fisión. Sin embargo, en la actualidad, la única línea de investigación activa es la relacionada con aplicaciones del análisis por activación neutrónica, con una producción anual promedio de apenas dos artículos publicados en revistas indexadas en Scopus. Un aspecto crítico es la inactividad en los tubos neutrónicos del RP-10 debido a la falta de instrumentación adecuada y de personal investigador capacitado para usarlas. En la práctica, el reactor RP-10 se utiliza principalmente para la producción de radiofármacos, compitiendo con empresas importadoras, lo que contrasta con su naturaleza como instalación destinada a la investigación. Ante ello, resulta imperativo que el reactor cumpla con su propósito principal: promover la investigación básica y aplicada, siguiendo el ejemplo de otros países que poseen reactores similares y los utilizan como plataformas para su desarrollo científico y tecnológico.
Descargas
Citas
Aguirre, A. H., & Lazaro, G. S. (2005). Maintenance optimization of the RP10 shutdown safety system. Advances in Safety and Reliability - Proceedings of the European Safety and Reliability Conference, ESREL 2005.
Alviar, M., Miranda, J., & Bedregal, P. (2020). A proposal of excipients mixture for the elaboration of Na131I capsules. Journal of Radioanalytical and Nuclear Chemistry, 325(3), 857–862. https://doi.org/10.1007/s10967-020-07255-w
Amaya, F., & Montoya, M. (2000). Simulation of X ray irradiation on human hand. Annual International Conference of the IEEE Engineering in Medicine and Biology - Proceedings, 4.
Bazo, J., Rojas, J. M., Best, S., Bruna, R., Endress, E., Mendoza, P., Poma, V., & Gago, A. M. (2018). Testing FLUKA on neutron activation of Si and Ge at nuclear research reactor using gamma spectroscopy. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 885, 1–6. https://doi.org/10.1016/j.nima.2017.12.042
Bedregal, P., Mendoza, P., Ubillús, M., & Montoya, E. (2010). K0-INAA method accuracy using Zn as comparator. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 622(2), 419–424. https://doi.org/10.1016/j.nima.2010.01.043
Bedregal, P., Najarro, L., Jara, R., & Ubillus, M. (2024). Heavy metals contamination from the oil spill incident in the Peruvian Sea, determined by k0-INAA and AAS. Journal of Radioanalytical and Nuclear Chemistry, 333(12), 6653–6659. https://doi.org/10.1007/s10967-024-09836-5
Bedregal, P. S., Mendoza, P. A., Ubillús, M. S., Cohen, I. M., & Montoya, E. H. (2014). The k 0 and relative INAA methods to determine elements in entire archaeological pottery objects. Journal of Radioanalytical and Nuclear Chemistry, 300(2), 673–678. https://doi.org/10.1007/s10967-014-3080-7
Bedregal, P. S., Mendoza, P. A., Ubillús, M. S., Yépez, W., Jennings, J., & Montoya, E. H. (2015). Wari influence in southern Peru: provenance study of middle horizon pottery from the archaeological site of La Real using k 0-INAA. Journal of Radioanalytical and Nuclear Chemistry, 306(3), 729–736. https://doi.org/10.1007/s10967-015-4128-z
Bedregal, P. S., & Montoya, E. H. (2002). Determination of cadmium using radiochemical neutron activation analysis. Journal of Radioanalytical and Nuclear Chemistry, 254(2), 363–364. https://doi.org/10.1023/A:1021644420926
Bedregal, P. S., Ubillús, M. S., & Mendoza, P. A. (2018). k0-INAA as a contributor in nutrition and health: multielemental determination in Stevia rebaudiana Bertoni, leaves and stevioside product. Journal of Radioanalytical and Nuclear Chemistry, 315(2), 309–314. https://doi.org/10.1007/s10967-017-5684-1
Bedregal, P. S., Ubillus, M. S., Poma, V. R., & Cohen, I. M. (2018). The preparation of monitors and comparators for k0-INAA using standard solutions. Journal of Radioanalytical and Nuclear Chemistry, 315(3), 695–701. https://doi.org/10.1007/s10967-017-5695-y
Bedregal, P., Ubillus, M., Cáceres-Rivero, C., Olivera, P., Garay, R., Rojas, J., Zafra, R., & Urdanivia, R. (2023). Determination of atmospheric aerosol components in an urban area to evaluate the air quality and identify the sources of contamination. Journal of Radioanalytical and Nuclear Chemistry, 332(8), 3507–3514. https://doi.org/10.1007/s10967-023-08805-8
Blaauw, M., Ridikas, D., Baytelesov, S., Salas, P. S. B., Chakrova, Y., Eun-Ha, C., Dahalan, R., Fortunato, A. H., Jacimovic, R., Kling, A., Muñoz, L., Mohamed, N. M. A., Párkányi, D., Singh, T., & Van Dong Duong. (2017). Estimation of 99Mo production rates from natural molybdenum in research reactors. Journal of Radioanalytical and Nuclear Chemistry, 311(1), 409–418. https://doi.org/10.1007/s10967-016-5036-6
Cheilletz, A., Clark, A. H., Farrar, E., Pauca, G. A., Pichavant, M., & Sandeman, H. A. (1992). Volcano-stratigraphy and 40Ar/39Ar geochronology of the Macusani ignimbrite field: monitor of the Miocene geodynamic evolution of the Andes of southeast Peru. Tectonophysics, 205(1–3), 307–327. https://doi.org/10.1016/0040-1951(92)90433-7
Cohen, I. M., Robles, A., Mendoza, P., Airas, R. M., & Montoya, E. H. (2018). Experimental evidences of 95 m Tc production in a nuclear reactor. Applied Radiation and Isotopes, 135, 207–211. https://doi.org/10.1016/j.apradiso.2018.02.001
Cohen, I. M., Segovia, M. S., Bedregal, P. S., Mendoza, P. A., Aguirre, A. R., & Montoya, E. H. (2016). A novel method for determination of copper in zinc destined to 64Cu production in a nuclear reactor. Journal of Radioanalytical and Nuclear Chemistry, 309(1), 23–26. https://doi.org/10.1007/s10967-015-4678-0
Delgado, M., Olivera, P. Montoya, E. & Bustamante, A. (2007). Bulgind a bridge to the past: archaeometry at the IPEN reactor. Archaeometry, 49(2), 403–412. https://doi.org/10.1111/j.1475-4754.2007.00310.x
Gobierno del Perú. (2022, April 21). Ley de creación del Instituto Peruano de Energía Nuclear. Plataforma Del Estado Peruano. https://cdn.www.gob.pe/uploads/document/file/3283891/ley_creacion.pdf.pdf?v=1655839989
Gobierno Peruano. (1977, July 5). Ley Orgánica del Instituto Peruano de Energía Nuclear, Ley 21875 . Diario Oficial El Peruano. https://docs.peru.justia.com/federales/decretos-leyes/21875-jul-5-1977.pdf
Hinostroza, H., Ravello, Y., Cornejo, N., Mendoza, M., Montoya, M., Zúñiga, A., Huapaya, I., Hinostroza, H., & Hinostroza, H. (1992). Neutrografía en el reactor peruano RP-10. INSTITUTO PERUANO DE ENERGÍA NUCLEAR-IPEN. http://dspace.ipen.gob.pe/handle/ipen/154
Hurtado de Mendoza, D. (2009). Periferia y fronteras tecnológicas. Energía nuclear y dictadura militar en la Argentina (1976-1983). Revista Iberoamericana de Ciencia Tecnología y Sociedad, 5(13), 27–64. https://www.scielo.org.ar/scielo.php?pid=S1850-00132009000200003&script=sci_arttext
Instituto Peruano de Energía Nuclear. (2006). Informe de Gestión 2001-2005. https://www.ipen.gob.pe/images/MEMORIA-GESTION-2006-2021-01.pdf
IPEN. (2024). Instituto Peruano de Energía Nuclear. Informe de Gestión 2023. https://www.gob.pe/institucion/ipen/informes-publicaciones/5644396-informe-de-gestion-2023
J. Valencia, & G. Arroyo. (1985). Geochemical aspects of the uranium occurrences of Macusani, Puno, Peru. Technical Committee Meeting on Uranium Deposits in Volcanic Rocks., 275–288.
Montoya, E., Bedregal, P., Mendoza, P., Ubillús, M., Torres, B., & Cohen, I. M. (2010). The development of the k0 method in Peru: Past, present and future perspectives. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 622(2), 381–384. https://doi.org/10.1016/j.nima.2010.04.005
Montoya, E. H., Mendoza, P. A., Bedregal, P. S., Baltuano, O. R., & Cohen, I. M. (2012). A combined method of neutron activation analysis and radiometric measurements for 234U and 238U determination in soil samples of low uranium concentration. Journal of Radioanalytical and Nuclear Chemistry, 291(1), 175–178. https://doi.org/10.1007/s10967-011-1273-x
Montoya, E. H. R., Cohen, I. M., Hidalgo, P. M., Chamorro, B. T., & Salas, P. B. (1999). The corrections for non-ideal behavior of the epithermal neutron spectrum and the restitution of the simplicity in parametric activation analysis. Journal of Radioanalytical and Nuclear Chemistry, 240(2), 475–479. https://doi.org/10.1007/BF02349399
Montoya, M. (1984). Mass and kinetic energy distribution in cold fission of233U,235U and239Pu induced by thermal neutrons. Zeitschrift Für Physik A Atoms and Nuclei, 319(2), 219–225. https://doi.org/10.1007/BF01415636
Montoya, M. (2014). Coulomb effects in isobaric cold fission from reactions 233U(nth,f), 235U(nth,f), 239Pu(nth,f) and 252Cf(sf). Revista Mexicana de Fisica, 60(5), 350–356.
Montoya, M., Rojas, J., & Lobato, I. (2008). Neutron emission effects on final fragments mass and kinetic energy distribution from low energy fission of 234U. Revista Mexicana de Física, 54(6), 440–445. http://www.scielo.org.mx/scielo.php?pid=S0035-001X2008000600006&script=sci_arttext
Montoya, M., Saettone, E., & Rojas, J. (2007). Monte Carlo simulation for fragment mass and kinetic energy distributions from the neutron-induced fission of 235U. Revista Mexicana de Física, 53(5), 366–370. http://www.scielo.org.mx/scielo.php?script=sci_abstract&pid=S0035-001X2007000500006&lng=es&nrm=iso
Mora, M. V., Padilla, A. G., Palomino, J. L. C., & Terremoto, L. A. A. (2011). Nondestructive burnup measurements by gamma-ray spectroscopy on spent fuel elements of the RP-10 research reactor. Progress in Nuclear Energy, 53(4), 344–353. https://doi.org/10.1016/j.pnucene.2011.01.003
Munive, M., Baltuano, Ó., Gago, J., & Bautista, G. (2007). Avances en el montaje del difractómetro Amauta. https://www.osti.gov/etdeweb/biblio/21294579
Munive, M., Baltuano, Ó., Gago, J., Hernández, Y., & Arrieta, R. (2010). First records of powder diffraction patterns of nickel and yttrium oxide in the “Amauta” neutron diffractometer; Primeros registros de patrones de difraccion de polvo de niquel y oxido de itrio en el difractometro de neutrones “Amauta.” https://www.osti.gov/etdeweb/biblio/21402838
Pichavant, M., Kontak, D. J., Briqueu, L., Herrera, J. V., & Clark, A. H. (1988a). The Miocene-Pliocene Macusani Volcanics, SE Peru. Contributions to Mineralogy and Petrology, 100(3), 325–338. https://doi.org/10.1007/BF00379742
Pichavant, M., Kontak, D. J., Briqueu, L., Herrera, J. V., & Clark, A. H. (1988b). The Miocene-Pliocene Macusani Volcanics, SE Peru. Contributions to Mineralogy and Petrology, 100(3), 325–338. https://doi.org/10.1007/BF00379742
Pinault, J.-L., & Solis, J. (2009). The optimization of gamma spectra processing in prompt gamma neutron activation analysis (PGNAA). Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 267(7), 1139–1148. https://doi.org/10.1016/j.nimb.2009.01.131
Poupeau, G., Labrin, E., Sabil, N., Bigazzi, G., Arroyo, G., & Vatin-Pérignon, N. (1993). Fission-track dating of 15 macusanite glass pebbles from the Macusani volcanic field (SE Peru). Nuclear Tracks and Radiation Measurements, 21(4), 499–506. https://doi.org/10.1016/1359-0189(93)90189-G
Poupeau, G., Sabil, N., Villa, I. M., Bigazzi, G., Vatin-Perignon, N., Flores, P., Pereyra, P., Salas, G., & Arroyo, G. (1992). Fission-track and K-Ar ages of “macusanite” obsidian glasses, (SE Peru): Geodynamic implications. Tectonophysics, 205(1–3), 295–305. https://doi.org/10.1016/0040-1951(92)90432-6
Radicella, R. (2008). El Proyecto Perú. Revista de La Comision Nacional de Energia Atomica, 8(29/30), 5–13. https://las-ans.org.br/wp-content/uploads/2019/04/33-Radicella.pdf
Ravello, Y. (2001). Characterization and adjustment of the neutron radiography facility of the RP-10 nuclear reactor; Caracterizacion y puesta a punto de la facilidad de neutrografia del reactor nuclear RP-10. Universidad Nacional de Ingeniería.
Sandeman, H. A., Clark, A. H., Farrar, E., & Arroyo-Pauca, G. (1996). A critical appraisal of the Cayconi Formation, Crucero Basin, southeastern Peru. Journal of South American Earth Sciences, 9(5–6), 381–392. https://doi.org/10.1016/S0895-9811(96)00021-1
Sandeman, H. A., Clark, A. H., Farrar, E., & Pauca, G. A. (1997). Lithostratigraphy, petrology and 40Ar-39Ar geochronology of the Crucero Supergroup, Puno department, SE Peru. Journal of South American Earth Sciences, 10(3–4), 223–245. https://doi.org/10.1016/S0895-9811(97)00023-0
Torres, B., Montoya, E., Mendoza, P., Bedregal, P., Ubillús, M., & Olivera, P. (2003). Determination of gold and silver in copper concentrates, using k0 based neutron activation analysis. Journal of Radioanalytical and Nuclear Chemistry, 257(3), 597–601. https://doi.org/10.1023/A:1025452901690
Vasilopoulou, T., Stamatelatos, I. E., Montoya, E. H., Bedregal, P. S., Tsalafoutas, I., & Bode, P. (2015). Large sample neutron activation analysis of irregular-shaped pottery artifacts. Journal of Radioanalytical and Nuclear Chemistry, 303(1), 853–858. https://doi.org/10.1007/s10967-014-3307-7
Zuniga, A., Cuya, R. T., & Ravnik, M. (2003). MTR fuel element burn-up measurements by the reactivity method. Kerntechnik, 68(1–2), 23–27. https://doi.org/10.1515/kern-2003-681-208
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2025 Modesto Edilberto Montoya Zavaleta

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
CC BY 4.0 DEED Attribution 4.0 International