Data Mining Application to Credit Reliability

Authors

  • Edgard Kenny Venegas Palacios Escuela Profesional de Matemática. Facultad de Ciencias. Universidad Nacional de Ingeniería
  • Joseph Luis Kahn Casapía Escuela Profesional de Matemática. Facultad de Ciencias. Universidad Nacional de Ingenierí

Keywords:

Data mining, inear regression, bayesian methods, decision trees, artificial neural networks

Abstract

Classification models in Data Mining, focused on predicting whether a bank customer is reliable or
not to receive a credit, they present a score and precision with simple training for RL: 0:21% and 0:79%, NB:
0:74% and 0:76%, AD: 0:70% and 0:69%, RNA: 0:74% and 0:73%, cross-trained for RL: 0:20% and 0:79%,
NB: 0:73% and 0:72%, AD: 0:68% and 0:72%, RNA: 0:73% and 0:75%. In addition to using RL to find relationships
between the variables of the available database.

Downloads

Download data is not yet available.

References

1. L. C. Thomas. A survey of credit and behavioural scoring: forecasting nancial risk of lending to consumers. International Journal of Forecasting, 16:149{ 172, 2000.
2. Andrés Yesid Ramírez A. Técnicas de minería de datos aplicadas a la construcción de modelos de score crediticio: Estado del arte. Universidad Nacional de Colombia, 2007.
3. Y. Yang. Adaptive credit scoring with kernel learning methods. European Journal of Operational Research, 183:1521{1536, 2007.
4. H. Abdou, J. Pointon, and A. El-Masry. Neural netsversus conventional techniques in credit scoring in egyptian banking. Expert Systems with Applications, In Press:1606, 2007.
5. V. S. Desai, J. N. Crook, and G. A. Overstreet. A comparison of neural networks and linear scoring models in the credit union environment. European Journal of Operational Research, 95:24{37, 1996.
6. T. S. Lee and I. F. Chen. A two-stage hybrid credit scoring model using articial neural networks and multivariate adaptive regression splines. Expert Sys- tems with Applications, 28:743{752, 2005.
7. T. S. Lee, C.-C. Chiu, C.-J. Lu, and I.-F. Chen. Credit scoring using the hybrid neural discriminant technique. Expert Systems with Applications, 23:245{ 254, 2002.
8. R. Malhotra and D. K. Malhotra. Evaluating consumer loans using neural networks. Omega, 31:83{96, 2003.
9. D. West. Neural network credit scoring models. Com- puters and Operations Research, 27:1131{1152, 2000.
10. S. T. Li, W. Shiue, and M. H. Huang. The evaluation of consumer loans using support vector machines. Expert Systems with Applications, 30:772{782, 2006.
11. C. L. Huang, M. C. Chen, and C. J. Wang. Credit scoring with a data mining approach based on support vector machines. Expert Systems with Applications, 33:847{856, 2006.
12. N. C. Hsieh. Hybrid mining approach in the design of credit scoring models. Expert Systems with Applications, 28:655{665, 2005.
13. Petya Platikanova. El análisis económico financiero: Estado del arte. Revista de Contabilidad y Dirección, 2:95{120, 2005.
14. M. Lichman. UCI machine learning repository, 2013

Published

2021-06-18

How to Cite

Venegas Palacios, E. K., & Kahn Casapía, J. L. (2021). Data Mining Application to Credit Reliability. Journal of the Science Faculty @ UNI, 18(1), 37–46. Retrieved from https://revistas.uni.edu.pe/index.php/revciuni/article/view/967

Issue

Section

Artículos