Stability of homogeneous linear systems with second-order Markovian jumps in discrete time

Authors

  • Jorge Enrique Mayta Guillermo Escuela Profesional de Matemática. Facultad de Ciencias. Universidad Nacional de Ingeniería https://orcid.org/0000-0002-7872-1639
  • Jesús Cernades Gómez Escuela Profesional de Matemática. Facultad de Ciencias. Universidad Nacional de Ingeniería
  • William Carlos Echegaray Castillo Escuela Profesional de Matemática. Facultad de Ciencias. Universidad Nacional de Ingeniería

Keywords:

Linear systems with Markovian jumps , stability, Markov chains

Abstract

In this work we will analyze the stability of governed second-order homogeneous linear systems.
by a Markov chain which we will denote by the acronym SLHSMS. This type of system is similar to the family.
of linear systems with Markovian jumps which is known by its acronym in English is MJLS as denoted in
[1]. Linear systems governed by a Markov chain are dynamic systems that present changes
abrupt. We present some definitions of stability for the SLHSMS system, where these types of stability
They are equivalent as long as the state space of the Markov chain is small. This study is a contribution
to literature.

Downloads

Download data is not yet available.

References

1. Costa, Oswaldo Luiz do Valle. Discrete-time Markov jump linear systems Springer, London, 2005.
2. B. L. Stevens and F.L. Lewis Aircraft Modeling, Dynamics and Control , New York, NY: Wiley, 1991.
3. R.W. Newcomb The Semistate Description of Nonlinear Time-Variable Circuits,, IEEE Trans. Autom. Control Vol CAS-28 No.1, pp.62-71, January, 1981.
4. Yuandong Ji. Chizeck Howard. Jump Linear Quadratic gaussian control: Steady-State Solution and Testable Conditions, Control-Theory and Advanced Technology Vol 6. No.3, pp.289-319, 1990.
5. Tejada R. Arturo. Analysis of error recovery effects on digital ight control systems. Ms Dissertation, Old Dominion University, 2002.
6. Feng Xiangbo. Loparo Kenneth. & Yuandong Ji. Chizeck Howard. Stochastic Stability properties of Jump Linear Systems,IEEE Transactions on Automatic Control, vol 37 No.1, pp. 38-53, 1992.
7. Fang, Y. Stability analysis of linear control systems with uncertain parameters , Ph.D. Dissertation, Dept. of Sys- tems, Control, and Industrial Engineering, Case Western Reserve University, Cleveland, OH.Springer, London, 1998.
8. Mayta G. Jorge. Regularidad y Estabilidad de Sistemas Lineales con Saltos Markovianos en Tiempo Discreto. Tesis M.S, Dpto. Matemática, Ponticia Universidad Católica del Perú, Lima, Perú, 2015.

Published

2021-06-18

How to Cite

Mayta Guillermo, J. E., Cernades Gómez, J., & Echegaray Castillo, W. C. (2021). Stability of homogeneous linear systems with second-order Markovian jumps in discrete time. Journal of the Science Faculty @ UNI, 18(1), 30–36. Retrieved from https://revistas.uni.edu.pe/index.php/revciuni/article/view/966

Issue

Section

Artículos