Análisis de Transiciones de Fase en un Ferromagneto idealaplicando el Método Monte Carlo a los Modelos de Ising y Heisenberg en 2 y 3 dimensiones
Keywords:
Models of Ising and Heisenberg , ferromagnetism , phase transitions , Monte Carlo method , critical point exponents , universalityAbstract
Some results obtained from applying the Monte Carlo method to the models of Ising and Heisenberg for acrystal in 2 and 3 dimensions, where ferromagnetic phase transitions were detected, are presented. In particular,the Magnetization (|~M|) vs. Temperature (T) phase diagram is shown for 3 kinds of lattices (sc, bcc and fcc) for theHeisenberg 3D system in order to visualize the phase transition and calculate the respective critical temperatureTc.Then the values ofTcobtained for each of the analyzed systems (Ising 2D, Heisenberg 2D, Ising 3D y Heisenberg3D) are presented in a table, where we considered for each 3D case the cubic crystalline structrures mentioned.Taking into account that in a vicinity of the critical point (T≈Tc,H≈0) the main thermodynamic quantitiesobey universal scaling laws, the main critical exponentes (β,α,γ,δ) were calculated numerically for each systemfrom their respective phase diagrams, this permitted to verify the phenomenon of universality for each 3D system
Downloads
References
2. K. Huang, Statistical Mechanics. John Willey, New York, 1987.
3. W. Greiner, Thermodynamics and Statistical Mechanics. Springer, 2004.
4. D. Chandler, Introduction to Modern Statistical Mechanics. Oxford University Press, 1987.
5. M. Sancho - J. Ortín, Curso de física estadística. Edicions de la Universitat de Barcelona, 2001.
6. R. Kubo, Statistical Physics I, Equilibrium Statistical Mechanics. Springer, 1992.
7. A. Paredes - H. Loro, Método MonteCarloMetropolis en la solución del modelo de Ising para el ferromagnetismo. Revciuni 8, 1, 77, 2004.
8. N. Ashcroft - N. Mermin, Solid State Physics. Cornell University. Harcourt College Publishers, 1976.
9. K. Binder - D.W. Heermann, Monte Carlo Simulation in Statistical Physics, An introduction. Springer, 2002.
10. M.E.J Newman - G.T. Barkema, Monte Carlo Methods in Statistical Physics. Oxford University Press, 1998.
11. Antonio F. Zegarra Borrero, Tesis de Licenciatura, Universidad Nacional de Ingeniería (por defender).
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 REVCIUNI
This work is licensed under a Creative Commons Attribution 4.0 International License.
Articles published by REVCIUNI can be shared through the Creative Commons international public license: CC BY 4.0. Permissions beyond this scope can be consulted through the email revistas@uni.edu.pe