Controllability and Observability in Linear Differential Equations with Matrix Coefficients
Keywords:
Controllability, ObservabilityAbstract
This work present the theory of the dynamic solution of linear homogeneous differential equation with matrix coefficients, that obtaining results used in the development of the theory of controllability, observability linear homogeneous differential equation with matrix coefficients.
Downloads
References
Clayssen, J.C.R., Tsukazan T. Dynamical Solutions of Linear Matrix Differential Equations. Quarterly of Applied Mathematics, vol XLVIII, N° 1, 1990.
Inman, D.J. Vibration with Control, Measurement and Stability. Prentice Hall, 1989.
Murray R. Spiegel. Transformadas de Laplace. McGraw-Hill, 1970.
Arthur A. Hauser, JR. Variable Compleja. Fondo Educativo Interamericano, S.A. 1973.
Clayssen, J.C.R., German Canahualpa, Claudio Jung. A direct approach to Second order matriz Non-Classical Vibrating equations. Applied Numerical Mathematics 30. 1999.
Rojas M. Arturo. Control Avanzado Diseño y Aplicaciones en tiempo real. Editorial Maguiña Uni 2001.
Canales R. Roberto, Barrera R. Renato. Análisis de Sistemas dinámicos y control automático. Editorial Limusa, S.A. 1976.
J. Grantham Walter, L. Vincent Thomas. Sistemas de Control moderno análisis y diseño. Editorial Limusa, S.A. 1998.
Collanta H. Andres. Controlabilidad y Observabilidad en Ecuaciones Diferenciales con Coeficientes Matriciales. Tesis de Licenciatura en Ciencias con mención em Matemática. Univesidad Nacional de Ingeniería, Lima-Perú. 2005.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2005 Journal of the Science Faculty @ UNI
This work is licensed under a Creative Commons Attribution 4.0 International License.
Articles published by REVCIUNI can be shared through the Creative Commons international public license: CC BY 4.0. Permissions beyond this scope can be consulted through the email revistas@uni.edu.pe