Synthesis and characterization of SWIR-emitting LaF3 Nd3+ nanoparticles

Authors

Keywords:

Nanoparticles , wet chemistry , non radioactive transitions

Abstract

Using the wet chemistry method, LaF3: N d3+ nanoparticles have been synthesized. The X-ray spectra of these nanoparticles show an excellent correspondence with the hexagonal structure of LaF3 reported in the literature. Using Scherrer's formula, the size of these nanoparticles has been estimated at 20nm. The optical absorption spectra verify the presence of N d in these nanoparticles, observing that the most intense band corresponds to the transition 4 I9/2 →4 F7/2, 4 S3/2. By dissolving these nanoparticles in water and irradiating them with a laser of 808nm and 1.7W power, a heating of the liquid was observed, reaching a temperature of 45.2 ◦C, which is not observed when irradiating water without nanoparticles with this laser. This phenomenon is explained by the non-radiative transitions from the 4F3/2 level to lower energy states in the N d3+.

Downloads

Download data is not yet available.

References

1. G. Sinha, A. Patra, Generation of green, red and white light from rare-earth doped Ga2O3 nanoparticles Chem. Phys. Lett. 473, 151, 2009.
2. M. Y. Xie, L. Yu, H. He, and X. F. Yu, N d doped LaF3 nanoparticles as self-monitored photo-thermal agents. J. Solid State Chem. 182, 597-601, 2009.
3. Xiaoxia Cui, Jiangbo She, Kai Cui, Chao Gao, Chaoqi Hou, Wei Wei, Bo Peng, N d3+ -doped LaF3 nanoparticles with a larger emission cross-section, Chemical Physics Letters 489, 191-194, 2010.
4. Ueslen Rocha, K. Upendra Kumar, Carlos Jacinto, Julio Ramiro, Antonio J. Caamano, José García Sole and Daniel Jaque , N d doped LaF3 nanoparticles as self-monitored photo-thermal agents. APPLIED PHYSICS LETTERS, 104, 053703, 2014
5. R. W. Y. Habash, R. Bansal, D. Krewski, and H. T. Alhafid, Thermal therapy, part 2: hyperthermia techniques. CRC Crit. Rev. Bioeng. 34, 491-542, 2006.
6. N. H. Kiess and G. H. Dieke, Energy Levels of Er3+ and P r3+ in Hexagonal LaBr3 J. Chem. Phys. 45, 2729, 1966.
7. W. H. Zachariasen, Energy Levels of Er3+ and P r3+ in Hexagonal LaBr3 J. Chem. Phys. 16, 254, 1948.
8. Gregson, D.; Catlow, C. R. A.; Chadwick, A. V.; Lander, G. H.; Cormack, A. N.; Fender, B. E. F., Acta Crystallogr., Sect. B, 39, 687- 691, 1983.
9. A. A. Ansari, S. P. Singh, N. Singh and B. D. Malhotra, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 86, 432-436, 2012.
10. A. Bednarkiewicz, D. Wawrzynczyk, M. Nyk, W. Strek, Optically stimulated heating using N d3+ doped NaY F4 colloidal near infrared nanophosphors, Appl Phys B, 103:847-852, 2011.
11. D. Wawrzynczyk, A. Bednarkiewicz, M. Nyk, W. Strek and M. Samoc,Neodymium (III) doped fluoride nanoparticles as non-contact optical temperature sensors, Nanoscale, 4, 6959-961, 2012.

Published

2021-06-18

How to Cite

Palacios, E., Loro, H., Puga , R., Eyzaguirre, C., & Hernández , J. M. (2021). Synthesis and characterization of SWIR-emitting LaF3 Nd3+ nanoparticles. Journal of the Science Faculty @ UNI, 18(1), 54–58. Retrieved from https://revistas.uni.edu.pe/index.php/revciuni/article/view/1284

Issue

Section

Artículos