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DYNAMIC ANALYSIS OF REINFORCED CONCRETE STRUCTURES

ANÁLISIS DINÁMICO DE ESTRUCTURAS DE CONCRETO ARMADO

Jorge L. P. Tamayo1, Armando M. Awruch2, Inácio B. Morsch3

ABSTRACT

The objective of this work is to provide a reliable numerical model using the finite element method (FEM)
for the dynamic analysis of reinforced concrete (RC) structures. For this purpose, a computer program
based on a strain-rate sensitive elasto-plastic theory is developed using 3D brick finite elements. The
implicit Newmark scheme with predictor and corrector phases is used for time integration of the nonlinear
system of equations. In addition, the steel reinforcement is considered to be smeared and perfectly
adhered to concrete and represented by membrane finite elements. Two benchmark examples are analyzed
with the present numerical model and results are compared with those obtained by other authors. The
present numerical model is able to reproduce the path failure, collapse loads and failure mechanism
within an acceptable level of accuracy.

Keywords: Reinforced concrete (RC) structures, Finite element method (FEM).

RESUMEN

El objetivo de este trabajo es presentar un modelo numérico confiable usando el método de los elementos
finitos (MEF) para el análisis dinámico de estructuras de concreto reforzado. Con este propósito, un
programa de cómputo basado en la teoría de elasto-plasticidad con sensibilidad a la velocidad de
deformación es desarrollado usando elementos finitos tridimensionales. El procedimiento de Newmark es
adoptado para la integración en el tiempo del sistema no linear de ecuaciones. Además, se supone que el
acero de refuerzo está perfectamente distribuido e adherido al concreto, siendo representado por
elementos finitos de membrana. Dos ejemplos son solucionados con el presente modelo numérico y los
resultados obtenidos son comparados con los resultados de otros autores. Para todos los casos, la
trayectoria de falla, la carga de colapso y el mecanismo de falla son reproducidos con suficiente
precisión.

Palabras clave.- Estructuras de concreto reforzado, Método de los elementos finitos (MEF).

INTRODUCTION

Nonlinear analysis of reinforced concrete
structures is an important subject nowadays.
Any reinforced concrete structural system may
be subjected to dynamic loading during its life.

Understanding of the structural response to
such load is essential in order to protect
infrastructure. For this purpose, mathematical
models for predicting the behaviour of concrete
under dynamic loading are formulated in this
work.
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Moreover, due to infinite number of permutations
of structural parameters and due to the cost of
experimental test, it is desirable to employ a
numerical tool for the prediction of the structural
response. In this work, a computer code based on a
displacement approach is developed using 3D brick
elements (see Fig. 1).

Reliability of the present numerical code is
demonstrated by the solution of two well-known
examples.

Fig. 1 20-node brick element.

FINITE ELEMENT FORMULATION AND
CONSTITUTIVE MODEL

The 20-node isoparametric quadratic brick element
is used here to represent the concrete structure
where the reinforcement bars are modelled using
the smeared layer approach.

The displacement field within the element is
defined in terms of the shape functions and
displacement values at the nodes.

Each nodal point has three degrees of freedom u ,
v and w along the cartesian x , y and z
coordinates, respectively.

Therefore, for each element the displacement
vector is expressed in the following manner:

   202020222111 ,,.....,,,,, wvuwvuwvuU b  (1)

The strain components vector is defined by:
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or
     bbb UB (3)

where kN is the shape function of node k and

 bB is the strain-displacement matrix. The stresses
and strains are related by the following expression:
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where is the material constitutive matrix in the
global system. Equivalent nodal forces, at given
iteration i , are expressed in the following form:
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The stiffness matrix for a concrete element of
volume V can be expressed as:

       
V
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where  ietD is the uncracked, cracked or elasto-
plastic constitutive matrix for the concrete material
and the elastic or elasto-plastic constitutive matrix
for the steel reinforcement. An integration rule of
15 points is found to be suitable to diminish shear
locking effect. Concrete in compression is modeled
using the associated theory of plasticity; a modified
Drucker-Prager yield criterion (see Fig. 2), which
was proposed by Cervera et al. [1], is used in this
work. Due to nonlinear hardening behavior, this
yield criterion defines an initial yield surface at an
effective stress equal to 0 0.3 cf (which is the

beginning of the plastic deformation) and a limit

1

8

4

12

16 19

15

18

14

10
2

5

9 6
17

20
3

11





a) b)

 



x y

z

1

2

3
4

5

6

7

8

9

 D



TECNIA 22 (1) 2012

35
Dynamic analysis of reinforced concrete structures

surface separating a nonlinear state from a perfect
elasto-plastic one, as it is shown in Fig. 3.  The
yield criterion is defined as:
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21

2
2

1
2

1 pomJIccIF   (7)

where 1I and 2J are the first and the deviatoric
second stress invariants, respectively. In addition,

0 is the effective stress which depends on the

effective plastic deformation p , being this last
parameter defined in terms of the plastic work
developed by the material. The constants c and
m are evaluated from experimental test and are
equal to 0.1775 and 1.355, respectively. The
associated flow rule is defined as:
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with the flow vector given by:
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In Equation (8),  d contains the components of

the total strain, p
ijd is a component of the plastic

strain tensor,  eD is the elastic constitutive matrix
and H  is the hardening parameter established as
the slope of the uniaxial curve which defines the
hardening rule. This curve known as “Madrid
parabola” is defined by the following expression:

  2/122)( pocpcpy EEH   (10)

where cE is the elastic modulus, o represents the

total strain at maximum compression stress cf .
The elasto-plastic constitutive relation is expressed
in the following differential form:
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where  etD is the elasto-plastic constitutive
matrix. Finally, the crushing condition is given by:
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where 1I  and 2J  are the first and the deviatoric

second strain invariants, respectively and u
represents the ultimate deformation extrapolated
from experimental test (it is taken here as 0.0035).

Fig. 2 Bi-axial representation of constitutive
model for concrete.

Fig. 3 Uni-axial representation of constitutive
model for concrete.

Earlier developments and studies suggest that a
concrete model intended for transient analysis
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should be rate and history dependent. To describe
rate effects, the constitutive law, which was first
introduced in Equation (7), can be rewritten as:



















 

3302.0

510
0279.01)(





pood

(13)

in which od is now a yield function both of the

strain history and the current strain rate . The
reader is referred to the work of Liu and Owen [2]
for a detailed explanation of this consideration.
Otherwise, because the cracking tensile strain of
concrete is almost invariably in dynamic loading,
the cracking is governed by a maximum tensile
strain criterion. Then, the response of concrete
under tensile stresses is assumed to be linear elastic
until the fracture surface is reached (see Fig. 2) and
then, its behavior is characterized by an orthotropic
material. Cracks are assumed to occur in planes
perpendicular to the direction of the maximum
tensile strain as soon as this strain reaches the
specified concrete tensile strain ct .

After cracking has occurred the elastic modulus
and Poisson’s ratio are assumed to be zero in the
perpendicular direction to the cracked plane, and a
reduced shear modulus is employed. Due to bond
effects, cracked concrete carries, between cracks, a
certain amount of tensile force normal to the
cracked plane. This effect is considered through a
relationship between the strain and the stress
normal to the cracking plane direction, as shown in
Fig. 4. For more details of this algorithm, the
reader is referred to reference [3].

Fig. 4 Tension stiffening model.

In Fig. 4 tf is the maximum tensile stress

associated to the tensile strain ct and the normal

stress j is determined from the current strain j
as established in the following expression:
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where  is a softening parameter obtained from
the concept of fracture energy of concrete fG .

The use of the fracture energy guarantees that the
numerical response will be independent of the
finite element mesh [1].

The steel reinforcement is modeled as an uniaxial
elasto-plastic material with a constant elastic
modulus sE and a tangential modulus sE 

according to the bilinear stress-strain relation
shown in Fig. 5.

This relation is the same for tension and
compression stresses and hysteretic loops are
allowed to be formed.

Fig. 5 Constitutive law for steel.

NUMERICAL ALGORITHM

In order to introduce the implicit numerical
algorithm for the solution of the nonlinear dynamic
equation, it is necessary to describe the predictor
and corrector form of the Newmark scheme for the
integration of the semi-discrete system of
governing equations.

Typically at time station 1nt these equations take

the following form:
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where  M and  C are the mass and damping

matrices, respectively while   1na ,  1nv and

  1nd are the acceleration, velocity and

displacement vectors, respectively. The tangential
stiffness matrix  etK is related to the internal
forces in the following manner:
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In the Newmark scheme the displacement and
velocity at time 1nt can be expressed in the

following form:
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displacements  0d and velocities  0v are

provided and the acceleration  0a is obtained

from the following expression:
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By using Equation (15) to Equation (21), an
effective static problem is formed which is solved
using a Newton Raphson type scheme.

This algorithm is summarized in Table 1.

Table 1. Newmark’s algorithm.

1    Set iteration counter 0i
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APPLICATIONS

Simply supported beam

A simply supported reinforced concrete beam
shown in Fig. 6 is subjected to two symmetrically
applied concentrated loads which are applied as
step loads with a zero rise time. The problem has
been solved by Beshara and Virdi [4] and Cervera
et al. [1]. The beam is reinforced in the lower
position by 2 in2 (1290 mm2) steel area. The
material properties are listed in Table 2. Using
symmetry conditions only one half of the beam is
modeled using five 20-node isoparametric brick
elements with an embedded membrane element to
simulate the steel reinforcement. The dynamic
analysis is evaluated with a time step of 0.0005 sec.
No viscous damping is considered. As a check, an
elastic analysis (which is not shown here) was first
performed, and the results found here are in
excellent agreement with those given in reference
[1]. In Fig. 7, the central deflection history of the
nonlinear case, considering and neglecting the
strain-rate sensitive model compares well with the
results obtained by Cervera et al. [1] who used a
strain-rate sensitive elasto-viscoplastic model.

Fig. 6 ADINA reinforced concrete beam subjected
to point loads.

In Fig. 8, results obtained by Beshara and Virdi [4]
using an elasto-viscoplastic with and without a
strain-rate sensitive model are depicted.

These results are used as a base of comparison to
see the effect of the rate sensitive model. Some
differences are encountered with the present results
because in the given reference a different time step
was used, but the overall profile response is quite
similar. As expected, the use of a strain-rate
sensitive model decreases the central deflection.

Table 2. Material properties.

Material Beam
Kip, in (N, mm)

Power plant
N, mm

Concrete

cE 6100.0  (42059.5) 28000.0

v 0.20 0.20

cf 3.74   (25.8) 35.0

u 0.0035 0.0035

ct 0.750E-04 1.50E-04
 0.217E-06 (193.2) 0.245E-08
Steel

sE 30000.0  (206850.0) 210000.0

y 44.0  (303.4) 460.0

H  0.0  (0.0) 0.0

Fig. 7 The effect of strain rate on the nonlinear
response of the beam for the present model.

Fig. 8 The effect of strain rate on the nonlinear
response of the beam by reference [4].
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Aircraft impact on nuclear power plant

The horizontal impact of an aircraft on the shield
building of a nuclear power plant is analyzed (see
Cervera et al. [1]). The geometry, the loading
function and the reinforcement are specified in Fig.
9. The built-in reinforced concrete shell is
composite of cylindrical and spherical parts of
constant thickness. The reinforcement placed
circumferentially and meridionally on the interior
and exterior surfaces consist of bars of 40 mm
diameter, spaced at 8 cm. The material properties
are shown in Table 2. The impact is assumed to
occur horizontally. The location of the area of
impact of 28 m2 is also shown in Fig. 9. The load
history is also indicated and it is noted that the load
has a maximum value of 9000 ton. Since the
loading and geometry of the shell are symmetric,
only one half of the structure is modeled.

A mesh of 54 solid elements is used in the analysis,
with a local refinement in the vicinity of the impact
load (see Fig. 10) where a rectangular area of 14 m2

is defined to apply the distributed load. The
implicit Newmark scheme with 25.0 and

5.0 is used to integrate in time with a time

step 00475.0t .

Fig. 9 Nuclear containment structure: general
layout and loading time history for aircraft
impact taken from reference [1].

Horizontal displacements at points A, B and C are
plotted as functions of time in Fig. 11, Fig. 12 and
Fig 13, respectively. Two different values of
cracking strain are considered here (0.0015 and
0.00185). In order to compare similar profiles of
displacements (see Fig. 11), the response obtained
using a cracking strain value 0.00185 is compared
directly to that obtained by Cervera and Hinton [5]
using a cracking value 0.0020 because it yields
approximately the same peak displacement at time
0.274s. It is important to emphasize that some
differences are expected due to the slightly
different mesh used and because of the great
sensibility of the response at the impact zone due to
cracking. That is, a small variation in the value of
the cracking strain could yield significant changes
in displacements. Another fact to take into account
in the final response is the sensibility established
by the type of the integration rule used. Results
obtained at point B are also expected to be slightly
different because the finite element mesh presents a
small circular opening at the upper part of the
dome. In general, the profile patterns and
magnitude of displacements at the three different
locations are in good agreement with those
presented by Cervera and Hinton [5].

b)

Fig. 10 Finite element mesh with 54 brick
elements: a) Initial mesh; b) Magnified
deformed mesh at peak displacement.

CONCLUSIONS

In this work, an elasto-plastic explicit algorithm is
used to predict the dynamic behavior of reinforced
concrete structures under dynamic loading.
Validation of the present algorithm and code is
provided by modeling two usual benchmark
examples found in the technical literature about
this topic.
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Fig. 11 Horizontal displacement of point A for different cracking strain values (Gf = 0.2Kg/cm).

Fig. 12 Horizontal displacement of point B for different cracking strain values (Gf = 0.2Kg/cm).

Fig. 13 Horizontal displacement of point C for different cracking strain values (Gf = 0.2Kg/cm).
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The strain-rate sensitive model yields logical
results and prove to follow the same profile
obtained by Beshara and Virgi [4] for the beam.
Also, this rate effect was found to be more
important where compression dominates. The
present elasto-plastic model presented in this work
seems to be more advantageous when compared to
the strain-rate sensitive elasto-viscoplastic model
presented in Cervera et al. [1] because fewer
model parameters are needed. For the dynamic
analysis of the nuclear power plant, the final
displacement response is very sensitive to the way
in which cracking develops within the impact
zone, where the strain rate effect is not dominant.
Further investigation will be carried out to include
other effects such as concrete creep and shrinkage
and also the inclusion of pre-stressed tendons in
the numerical model.
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Notation

a : Global acceleration vector
B : Strain-displacement matrix
C : Damping matrix
c : Constant
d : Global displacement vector
D : Constitutive matrix
E : Young’s modulus
F : Yield function
g : Flow vector

H  : Hardening parameter

1I : Fist stress invariant

1I  : Fist strain invariant

2J : Deviatoric second stress invariant

2J  : Deviatoric second strain invariant

K : Stiffness matrix
N : Shape function
P : Nodal equivalent forces
v : Global velocity vector
t : Time
U : Element displacement vector
u : Displacement
V : Volume
v : Displacement

w : Displacement
x : Global coordinate
y : Global coordinate
z : Global coordinate
 : Newmark’s coefficient
 : Newmark’s coefficient
 : Increment
 : Strain
 : Effective strain
 : Strain rate
 : Unbalanced loads
 : Normal stress
 : Shear stress
 : Mass density
Subscripts

b : Brick
c : Concrete
et : Tangential
i : Current iteration
k : kth node
n : Time station
p : Plastic

y : Yielding
u : Ultimate

Superscripts

~ : Predicted value of 
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