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RESUMEN

El levantamiento de informacién de edificaciones es un componente clave en la planificacién urbana y la gestidn del riesgo de
desastres. En este estudio, se comparan dos métodos semiautomatizados para la estimacién del nimero de pisos de
edificaciones: uno basado en imagenes aéreas capturadas con drones y otro a partir de imagenes 360° obtenidas de Google
Street View. Para el método fotogramétrico, se generaron modelos tridimensionales y productos fotogramétricos generados a
partir de imagenes aéreas. Los resultados mostraron que la precision en la estimacién del nimero de pisos alcanzd su mayor
valor en edificaciones de un solo piso (92%) y el menor en edificaciones de cinco pisos (66%). En el caso del andlisis con imagenes
360°, Unicamente usando los modelos de clasificacién se obtuvo una precision de mas del 0.80% para todas las clases propuestas,
aunque con la limitacién que no identifica lotes baldios ni edificaciones mayores a 5 de manera exacta. Asimismo. se
implementaron diversos modelos de aprendizaje automatico, los cuales, tras la evaluacién del desempefio, el modelo Random
Forest obtuvo la mejor precisién con un valor de 0.861.

Palabras Clave: Estimacién de pisos de edificaciones, nDSM, riesgo sismico, aprendizaje profundo, imdgenes 360
ABSTRACT

Building data collection is a key component of urban planning and disaster risk management. In this study, two semi-automated
methods for estimating the number of floors in buildings are compared: one based on aerial images captured by drones, and
another using 360° images obtained from Google Street View. For the photogrammetric approach, three-dimensional models
and photogrammetric products were generated from aerial images. The results showed that accuracy in floor estimation was
highest for single-story buildings (92%) and lowest for five-story buildings (66%). Regarding the analysis using 360° images,
classification models alone achieved an accuracy greater than 80% for all proposed classes, although they exhibited limitations
in accurately identifying vacant lots and buildings taller than five floors. Additionally, several machine learning models were
implemented, among which the Random Forest model achieved the highest accuracy, with a value of 0.861.

Keywords: Building floor estimation, nDSM, seismic risk, seismic risk, 360 imageries.

1. INTRODUCTION laser [1, 2, 3], Global Navigation Satellite System

(GNSS) technologies or optical observations assisted

Building height is a primary parameter of by humans [4] ; the indirect methods is based on the

characterization for different objectives and research application of topics like remote sensing: satellite

workflows. The state of the art for estimating it is images [5], Remotely Piloted Aircraft (RPA) images

very extensive in both direct and indirect methods. [6,7, 8]; deep learning and neuronal networks [9, 10,
While first focus on using equipment that employs 11].
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Current Peruvian seismic risk assessment and
tsunami hazard methodologies are applying at block
level and use the building height as one of its
parameters [12, 13]; so, this study open a more
detailed evaluation, approaching many difficulties
previously described.

Additionally, building height information is crucial
for determining debris volume and planning its
removal after a disaster caused by a natural or
anthropogenic hazard [14, 15, 16]. Moreover, these
results would help identify buildings with a high
potential for collapse during a major earthquake,
whose debris could obstruct pedestrian and/or
vehicular evacuation.

Aerial images are used for the 3D reconstruction
of the surface (including topography and objects on
it) through photogrammetry. Technological
advancements have now made it possible to use
drones to capture high-resolution aerial images. This
approach combines the versatility of unmanned
aerial vehicles (UAVs) with modern digital processing
techniques, enabling the efficient generation of 3D
point clouds and digital elevation models (DEMs)
with exceptional precision and detail. Specifically, the
use of drones has revolutionized traditional methods
for structure reconstruction and detection, offering
more cost-effective, efficient, and faster alternatives
compared to systems such as LiDAR and other
conventional techniques [17].

Among the most relevant products generated
through photogrammetry, Digital Surface Models
(DSMs) are crucial for representing the vertical
elevation of the terrain and the structures present on
it. Normalized DSM (nDSM), derived through
morphological operations such as the "top-hat"
technique, allow for the estimation of the relative
height of objects above the ground, making them
particularly useful for building detection and analysis,
a reference regarding the use of this
photogrammetric product was made by [18] where it
reports high accuracy in building detection through
the use of elevation information from the nDSM.

Based on elevation model data, Erener [1]
presents a workflow for calculating the number of
floors using the nDSM value, generated by LiDAR,
located at the centroid of each building trace and
dividing it by the average building floor height (taken
as3m).

Another recent application of remote sensing in
the field of building height extraction was conducted
by [7], using satellite imagery and implementing
photogrammetry and deep learning for the
generation of elevation models, as well as the use of
the percentile value for height determination. Some

of fields that require building height are land use,
urban planning and building construction.

These methods need a 360-magery dataset so
there are some popular GeoServices that provide a
large amount of data such as Google Street View,
Mappilary, Open Street View, Baidu, etc. Many of
them provides API’s for extracting data through an
automized request process, but all is not free
licensed.

However, Peru as a country with a bad urban
planification even in its capital, so it’s a challenger
study area for replicating these methods, as buildings
are very close to each other and there are no clear
boundaries between them, poorly georeferenced
cadastre maps at the lot level provided by the
government; low-quality and expensive satellite
imagery; visual pollution, etc.

This research compares two of the most principal
indirect methods, one through aerial images and
another through 360 images at street level.

2. METODOLOGY

2.1, BUILDING HEIGHT ESTIMATION THROUGH
PHOTOGRAMMETRIC RESTITUTION

Photogrammetry

!
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Fig. 1. The framework of the building heights and floor estimation
method.

2.1.1. PHOTOGRAMMETRIC FLIGHT PLANS

Flight plans were developed for the capture of
aerial photographs in the study area to obtain
information on all the infrastructure present in the
flight area and thus estimate the height of the
buildings detected.

The flight was made at an average altitude of 50
meters achieving an average GSD of 3 cm which
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guarantees a high definition of the photogrammetric
products that will be used in this research.

The equipment used for these flights was the
Mavic 3E Enterprise drone of the DJI brand, a device
widely used in high-precision photogrammetric
surveys due to the appropriate sensors it equips and
its RTK positioning that reduces the uncertainty of its
position through real-time corrections by connecting
to a GNSS base.

2.1.2. DEVELOPING THE NDSM

After the photogrammetric restitution, a very
important product for this research is obtained,
which is the DSM (Digital Surface Model) which
represents the distribution of heights of the raised
surface through photogrammetry techniques, which
includes vegetation, vehicles, buildings, terrain and
other objects. From this information, a DTM (Digital
Terrain Model) can be generated, which seeks to
represent only the distribution of terrain heights
(excluding objects, vegetation and vehicles) through
a classification of the point cloud. The purpose of
these products in our research is that by means of an
arithmetic difference between these products it is
possible to obtain the elevation of the objects,
buildings and trees within the study area (Figure 1).
The nDSM (normalized surface model) was calculated
by subtracting DTM from the DSM (Equation 1)

nDSM = DSM — DTM (1)

nDSM
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Fig. 2. Visual and elevation information for lot N°80 by
photogrammetric products, (a) ortomosaic and (b) normalized
DSM (nDSM).

In the nDSM, buildings and other objects may
appear to rest on a flat surface. Therefore, they can
be identified by analyzing the height values in the

nNDSM. The nDSM has values ranging from o to 31.5,
as illustrated in Figure 2.

2.1.3. BUILDING HEIGHT ESTIMATION

Based on the elevation values in each raster grid
cell, a histogram was generated (Figure 3) to
represent the frequency of pixels associated with
different height ranges within each lot, as defined by
the cadastral map.
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Fig. 3. Height histogram for lot N° 80.

The representative building height within each lot
was determined using the 75th percentile value of the
pixel distribution. This method reduces the influence
of non-structural elements that could distort the
actual building height, such as elevated objects on
the rooftop (e.g., water tanks or antennas). Then,
based on this estimated height, the number of floors
was calculated by dividing it by the typical floor
height and rounding to the nearest integer using
standard rounding rules. A typical floor height of 3
meters was used for this calculation. The building
floor values were obtained by using Eq. 2

n = round (h%) .. (2)

Where h is the representative building height, hf
is the typical floor height, round () represents
rounding to the nearest integer, and n is the building
floor value.
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2.2. BUILDING HEIGHT ESTIMATION THROUGH
360 IMAGERIES AT STREET LEVEL

360 image
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Fig. 4. The framework of the building heights and floor estimation
method.

Centered

2.2.1. 360 IMAGERY ADQUISITION

For data acquisition, Google Places APl and
Google Tiles APl were used to query all points with
available 360-degree images within the study area.
These APIs return the location of the nearest point
where a panoramic image exists, along with a unique
identifier called "pano_id" (see Figure 4).

The set of queried points was generated by
subdividing a road network shapefile every 8 meters
(which is the approximate spacing between Google
Street View images). Figure 5 shows all the available
points and the date when the images were captured.
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Fig. 5. Available 360 panoramas.

The locations of the obtained 360-degree images
are provided in latitude and longitude coordinates
using the WGS84 unprojected coordinate system.
According to the documentation, these coordinates
are not the original ones captured at the time of
acquisition but have been adjusted to align with the
road network.

To retrieve more detailed parameters for each
panorama, Google Tiles APl was used. This allowed
access to the original capture coordinates, gyroscope
information (rotation angles around each capture
axis), azimuth, and other relevant metadata.

2.2.2.360 IMAGERY PREPROCESSING

All tiles for each panorama were generated and
merged to reconstruct the complete image.
Additionally, each image was corrected using two
parameters obtained from the associated metadata:

e Tilt: The tilt of the panorama, measured in
degrees from the south pole of the
panorama to the horizon.

e Roll: The clockwise rotation around the line
of sight that was applied to the panorama to
level the horizon.

Due to the urban configuration, where buildings
are attached to each other, it is necessary to
individually identify each structure. In the study
"Automated  Building  Structural = Parameters
Extraction for Seismic Risk Assessment in Villa El
Salvador Area" [19], several instance segmentation
models with classifiers backbones based on
Convolutional Neural Networks (CNNs) and Vision
Transformers (ViTs) were trained to segment and
isolate each building, as shown in Figure 6 and Figure
7.

Fig. 6. Google 360 panorama.
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Fig. 8. Centered building images.

Subsequently, several CNNs were trained to
identify five structural parameters related to
estimating seismic risk in buildings, one of which is
the number of floors (see Figure 8). This parameter
will later be used to train a linear regression model to
obtain a more accurate prediction value.

2.2.3. PROPERTY ASSIGNMENT

Once the building has been identified and the
number of floors classified, the next step involves
assigning this value to the cadastral database. This
process consists of several steps:

1. The building mask is transformed from a
planar  projection to its  original
equirectangular projection (blue polyline).

2. The center of the facade is determined by
drawing a horizontal line (red line)
approximately 1.5 meters above the base of
the mask and finding the midpoint (yellow
point) of the intersection, as shown in Figure
9a.

3. After establishing the direction toward the
building, it was overlaid onto the cadastre,
and the number of floors was assigned to the
first lot it intersected.

Fig. 9. (a) Centered building images and (b) Lot assignment.

As shown in Figure gb, assigning the number of
floors to a lot is not unique; rather, it varies
depending on the availability of 360-degree images
surrounding the building. This situation leads us to
propose a method to determine the final assigned
value for the number of floors. The proposed
equation establishes that if the number of predictions
is exactly two, the prediction with the highest
probability score should be chosen. If more than two
predictions exist, the mode is selected if at least one
repetition occurs; otherwise, the prediction with the
highest probability is chosen.

argmax(prObpreds)r Npreds =2 (2)

Ntioors(Npreas) = { mode(preds), Npregs > 2

3. STUDY AREA

The study area is in the district of Chorrillos, Lima,
Peru. According to the sectorization map extracted
from the urban development portal of the district's
municipality, it includes three urban developments:
"Los Cedros de Villa", "Fovipol" and "Villa del Mar"
along with a small section of condominiums.

The total area covers 1.16 km? (Figure 10) and
consists of 3,344 lots designated for various uses,
including residential, commercial, recreational,
educational, and health purposes.

This urban cluster was selected due to its
significance for studying damage caused by both
earthquakes and tsunamis. According to [20],
Chorrillos is the district with the major quantity of
dwellings exposed by tsunami inundation in
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Metropolitan Lima Area with 51,414 people and 13,912
dwellings exposed to tsunami and the selected urban
developments for this study would be completely
affected by tsunami inundation [21] under the
scenario proposed by Jimenez et al. [22].

Legend
[ Metropolitan Lima Area
District boundaries
[ | study Area

5

Fig. 10. Study area

4. RESULTS ANALYSIS
4.1. COMPARISON OF METHODS

The results of applying both methodologies are
visualized in the confusion matrices (Figures 11 and
12). As observed, the CNN-based method fails to
identify lots that are vacant land (undeveloped) and
is also unable to detect buildings taller than five
floors.

1.0
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Fig. 11. Normalized confusion matrix with aerial images.
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Fig. 12. Normalized confusion matrix with 360 images.

Despite these limitations, the CNN method
demonstrates greater accuracy compared to the
photogrammetry-based approach. This improvement
is primarily because the floor count is based on
structural floors, considering;:

e Incomplete constructions without a finished

roof.

o Aflooris counted if at least 50% of its area is
built.

e The model ignores upper floors made of
lightweight, removable materials such as
drywall, wood paneling, Superboard, or
other similar materials unless the floor
directly below is built with a more resistant
material, such as masonry.

4.2. COMBINATION OF METHODS

Since two lists of predicted values are available, a
method is proposed to combine them into a new list
that will represent the results of both methodologies.
This will be achieved through the application of linear
regression models.

The training and validation datasets will be
obtained by splitting the list of values predicted by
the CNN into 80% for training and 20% for validation.

The models used include:

e Logistic Regression with a maximum of
1,000 iterations, C = 1, and the Ibfgs
optimization algorithm.

e Random Forest with 100 estimators.

e  Gradient Boosting with 100 estimatorsand a
learning rate of 0.1.

¢ AdaBoost with 100 estimators and a learning
rate of 1.

e Support Vector Machines (SVM) with C =1
and an RBF kernel.
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e k-Nearest Neighbors (k-NN) with 5
neighbors.

e Multinomial Naive Bayes, specifically
designed for discrete data.

Once the proposed regression models were
trained, it was verified—according to the
performance metrics presented in Table |—that the
Random Forest model achieved the best
performance, obtaining an accuracy of 0.861.
Consequently, the trained model was evaluated on
the validation dataset, and the resulting confusion
matrix is presented in Figure 13.

TABLA |
Comparison of performance metrics between all linear
classification models.

Model Accuracy Precision Recall F1
R:;iz;fm 0.854 0.898 0.844 0.864
Random Forest 0.861 0.886 0.874 0.878
AdaBoost 0.776 0.674 0.566 0.539
SVM 0.856 0.900 0.848 0.848
k-NN 0.759 0.832 0.787 0.867
Naive Bayes 0.853 0.868 0.869 0.800

0.8

0.6

True Label

-0.4

-0.2

0 i 2 3 4 5
Predicted Label

Fig. 13. Normalized confusion matrix with aerial and 360 imagery
trained with Random Forest linear regression model.

Table | presents four performance metrics:
accuracy, macro precision, recall, and F1-score for
each regression model. These values indicate that the
Random Forest model achieves the best final fit by
utilizing both sources of information: aerial images
and street-level panoramic images.

4.3 BUILDING FLOOR COUNT SURVEY USING 3D
MODEL

The use of three-dimensional representations for
obtaining building information is a widely adopted
technique with high accuracy. The most used product
for this purpose is the point cloud; however,

advancements in drone sensor technology and new
data acquisition techniques have enabled the
generation of high-quality 3D meshes. This facilitates
visual inspections for evaluators using tridimensional
models.

In this study, a photogrammetric restitution
program was used to generate a 3D mesh in OBJ
format from aerial photographs captured by drone.
Additionally, this model was shared with surveyors
through an online viewer (Figure 14) to determine the
number of floors for each building within each lot
(see Figure 15).

Urb. Los Cedros
de Villa

Urb. Los Cedros
de Villa

Fig. 15. Tridimensional model for lot N°8o.
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5. SEISMIC ASSESTMENT

The seismic risk assessment considered three
seismic demand levels: severe, rare, and very rare
[23], corresponding to average return periods of 475,
975, and 2,475 years (with 10%, 5%, and 2% probabilities
of exceedance in 50 years).

-12.200°

Based on the Peruvian Earthquake-Resistant
Design  Standard  (NTE-E030-2018)[24], these
scenarios resulted in maximum ground accelerations
of 441, 574, and 662 cm/s? on rigid soil profiles,
respectively. Soil amplification factors for the study
area were applied to estimate surface-level
accelerations.

Risk estimation was performed using SRSND s P . -
software by Zavala et al [25], previously validated ()
with damage data from the 2007 Pisco Earthquake .
Risk was quantified as repair costs relative to original
building costs, calibrated using observed damages
from the Pisco event. Additional vulnerability studies

-12.205°

-12.210°

by CISMID refined these repair-cost thresholds [26, g
27, 28]. Table Il summarizes the risk classification o
based on and Figure 16 shows the spatial distribution
of seismic risk according to the three levels of
demand. %
ﬁ
TABLE Il v
Classification of risk levels based on estimated repair cost.
Model Repair cost ~ Associated damage =)
- sz No damage, slight g
damage
L2722 15% - 30% Light damage -77.020¢ -77.015% -77.010° -77.005¢
Level 3 30% - 60% Moderate damage (c)
60% - 85% Severe damage
>85% Collapse Fig. 16. Spatial distribution of seismic risk at the lot level. a)

Tr=475 years, b) Tr=975 years, and ¢) 2475 years.

6. CONCLUSIONS

§ Photogrammetric  restitution from aerial
' photographs captured by drones is a cost-effective,

fast, and accurate technique compared to other
. building survey methods. This approach is particularly
§ useful for the development of urban inventories
- aimed at various fields, such as Disaster Risk

Management, where spatial information and building

characteristics are key factors in determining risk
j% levels.

-77.020° -77.015¢ -77.010° -77.005° .
@) vacant land (92%), while the lowest accuracy was

observed in five-story buildings (66%).

Using the method based on photogrammetric
products, the highest accuracy was obtained for
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Using the CNN method based on 360 imageries at
street level, the highest accuracy was obtained for
two-story and three-story buildings (85%), while the
lowest accuracy was observed in five-story buildings
or tallest (75%).

Combining both methods, the highest accuracy was
obtained for vacant land buildings (100%), while the
lowest accuracy was observed in one-story and three-
story buildings (83%).
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