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RESUMEN 

El levantamiento de información de edificaciones es un componente clave en la planificación urbana y la gestión del riesgo de 
desastres. En este estudio, se comparan dos métodos semiautomatizados para la estimación del número de pisos de 
edificaciones: uno basado en imágenes aéreas capturadas con drones y otro a partir de imágenes 360° obtenidas de Google 
Street View. Para el método fotogramétrico, se generaron modelos tridimensionales y productos fotogramétricos generados a 
partir de imágenes aéreas. Los resultados mostraron que la precisión en la estimación del número de pisos alcanzó su mayor 
valor en edificaciones de un solo piso (92%) y el menor en edificaciones de cinco pisos (66%). En el caso del análisis con imágenes 
360°, únicamente usando los modelos de clasificación se obtuvo una precisión de más del 0.80% para todas las clases propuestas, 
aunque con la limitación que no identifica lotes baldíos ni edificaciones mayores a 5 de manera exacta. Asimismo. se 
implementaron diversos modelos de aprendizaje automático, los cuales, tras la evaluación del desempeño, el modelo Random 
Forest obtuvo la mejor precisión con un valor de 0.861. 

Palabras Clave: Estimación de pisos de edificaciones, nDSM, riesgo sísmico, aprendizaje profundo, imágenes 360  

 
ABSTRACT 
 
Building data collection is a key component of urban planning and disaster risk management. In this study, two semi-automated 
methods for estimating the number of floors in buildings are compared: one based on aerial images captured by drones, and 
another using 360° images obtained from Google Street View. For the photogrammetric approach, three-dimensional models 
and photogrammetric products were generated from aerial images. The results showed that accuracy in floor estimation was 
highest for single-story buildings (92%) and lowest for five-story buildings (66%). Regarding the analysis using 360° images, 
classification models alone achieved an accuracy greater than 80% for all proposed classes, although they exhibited limitations 
in accurately identifying vacant lots and buildings taller than five floors. Additionally, several machine learning models were 
implemented, among which the Random Forest model achieved the highest accuracy, with a value of 0.861. 
 
Keywords: Building floor estimation, nDSM, seismic risk, seismic risk, 360 imageries. 

 

 

1. INTRODUCTION 
 
       Building height is a primary parameter of 
characterization for different objectives and research 
workflows. The state of the art for estimating it is 
very extensive in both direct and indirect methods. 
While first focus on using equipment that employs 
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laser [1, 2, 3], Global Navigation Satellite System 
(GNSS) technologies or optical observations assisted 
by humans [4] ; the indirect methods is based on the 
application of topics like remote sensing: satellite 
images [5], Remotely Piloted Aircraft (RPA) images 
[6, 7, 8] ; deep learning and neuronal networks  [9, 10, 
11]. 
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Current Peruvian seismic risk assessment and 
tsunami hazard methodologies are applying at block 
level and use the building height as one of its 
parameters [12, 13]; so, this study open a more 
detailed evaluation, approaching many difficulties 
previously described. 

Additionally, building height information is crucial 
for determining debris volume and planning its 
removal after a disaster caused by a natural or 
anthropogenic hazard [14, 15, 16]. Moreover, these 
results would help identify buildings with a high 
potential for collapse during a major earthquake, 
whose debris could obstruct pedestrian and/or 
vehicular evacuation.   

Aerial images are used for the 3D reconstruction 
of the surface (including topography and objects on 
it) through photogrammetry. Technological 
advancements have now made it possible to use 
drones to capture high-resolution aerial images. This 
approach combines the versatility of unmanned 
aerial vehicles (UAVs) with modern digital processing 
techniques, enabling the efficient generation of 3D 
point clouds and digital elevation models (DEMs) 
with exceptional precision and detail. Specifically, the 
use of drones has revolutionized traditional methods 
for structure reconstruction and detection, offering 
more cost-effective, efficient, and faster alternatives 
compared to systems such as LiDAR and other 
conventional techniques [17]. 

Among the most relevant products generated 
through photogrammetry, Digital Surface Models 
(DSMs) are crucial for representing the vertical 
elevation of the terrain and the structures present on 
it. Normalized DSM (nDSM), derived through 
morphological operations such as the "top-hat" 
technique, allow for the estimation of the relative 
height of objects above the ground, making them 
particularly useful for building detection and analysis, 
a reference regarding the use of this 
photogrammetric product was made by [18] where it 
reports high accuracy in building detection through 
the use of elevation information from the nDSM. 

Based on elevation model data, Erener [1] 
presents a workflow for calculating the number of 
floors using the nDSM value, generated by LiDAR, 
located at the centroid of each building trace and 
dividing it by the average building floor height (taken 
as 3 m). 

Another recent application of remote sensing in 
the field of building height extraction was conducted 
by [7], using satellite imagery and implementing 
photogrammetry and deep learning for the 
generation of elevation models, as well as the use of 
the percentile value for height determination. Some 

of fields that require building height are land use, 
urban planning and building construction.   

 
These methods need a 360-magery dataset so 

there are some popular GeoServices that provide a 
large amount of data such as Google Street View, 
Mappilary, Open Street View, Baidu, etc. Many of 
them provides API’s for extracting data through an 
automized request process, but all is not free 
licensed.  
 

However, Peru as a country with a bad urban 
planification even in its capital, so it’s a challenger 
study area for replicating these methods, as buildings 
are very close to each other and there are no clear 
boundaries between them, poorly georeferenced 
cadastre maps at the lot level provided by the 
government; low-quality and expensive satellite 
imagery; visual pollution, etc. 
 

This research compares two of the most principal 
indirect methods, one through aerial images and 
another through 360 images at street level. 

 
2. METODOLOGY 
 
2.1. BUILDING HEIGHT ESTIMATION THROUGH 
PHOTOGRAMMETRIC RESTITUTION 

 

 
 

Fig. 1. The framework of the building heights and floor estimation 
method. 

 
2.1.1. PHOTOGRAMMETRIC FLIGHT PLANS 
 

Flight plans were developed for the capture of 
aerial photographs in the study area to obtain 
information on all the infrastructure present in the 
flight area and thus estimate the height of the 
buildings detected. 

 
The flight was made at an average altitude of 50 

meters achieving an average GSD of 3 cm which 
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guarantees a high definition of the photogrammetric 
products that will be used in this research. 

 
The equipment used for these flights was the 

Mavic 3E Enterprise drone of the DJI brand, a device 
widely used in high-precision photogrammetric 
surveys due to the appropriate sensors it equips and 
its RTK positioning that reduces the uncertainty of its 
position through real-time corrections by connecting 
to a GNSS base. 

 
2.1.2. DEVELOPING THE NDSM 
 

After the photogrammetric restitution, a very 
important product for this research is obtained, 
which is the DSM (Digital Surface Model) which 
represents the distribution of heights of the raised 
surface through photogrammetry techniques, which 
includes vegetation, vehicles, buildings, terrain and 
other objects. From this information, a DTM (Digital 
Terrain Model) can be generated, which seeks to 
represent only the distribution of terrain heights 
(excluding objects, vegetation and vehicles) through 
a classification of the point cloud. The purpose of 
these products in our research is that by means of an 
arithmetic difference between these products it is 
possible to obtain the elevation of the objects, 
buildings and trees within the study area (Figure 1). 
The nDSM (normalized surface model) was calculated 
by subtracting DTM from the DSM (Equation 1) 

 
𝑛𝐷𝑆𝑀 = 𝐷𝑆𝑀 − 𝐷𝑇𝑀  (1) 

 

 
Fig. 2. Visual and elevation information for lot N°80 by 

photogrammetric products, (a) ortomosaic and (b) normalized 
DSM (nDSM). 

 
In the nDSM, buildings and other objects may 

appear to rest on a flat surface. Therefore, they can 
be identified by analyzing the height values in the 

nDSM. The nDSM has values ranging from 0 to 31.5, 
as illustrated in Figure 2. 
 

2.1.3. BUILDING HEIGHT ESTIMATION 
 

Based on the elevation values in each raster grid 
cell, a histogram was generated (Figure 3) to 
represent the frequency of pixels associated with 
different height ranges within each lot, as defined by 
the cadastral map. 

 

 

Fig. 3. Height histogram for lot N° 80. 

 
The representative building height within each lot 

was determined using the 75th percentile value of the 
pixel distribution. This method reduces the influence 
of non-structural elements that could distort the 
actual building height, such as elevated objects on 
the rooftop (e.g., water tanks or antennas). Then, 
based on this estimated height, the number of floors 
was calculated by dividing it by the typical floor 
height and rounding to the nearest integer using 
standard rounding rules. A typical floor height of 3 
meters was used for this calculation. The building 
floor values were obtained by using Eq. 2 

 

𝑛 = 𝑟𝑜𝑢𝑛𝑑 (
ℎ

ℎ𝑓
)   … (2) 

 
Where ℎ is the representative building height, ℎ𝑓 

is the typical floor height, 𝑟𝑜𝑢𝑛𝑑 (∙) represents 
rounding to the nearest integer, and 𝑛 is the building 
floor value. 
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2.2. BUILDING HEIGHT ESTIMATION THROUGH 
360 IMAGERIES AT STREET LEVEL 

 

 
 

Fig. 4. The framework of the building heights and floor estimation 
method. 

 
2.2.1. 360 IMAGERY ADQUISITION 
 
For data acquisition, Google Places API and 

Google Tiles API were used to query all points with 
available 360-degree images within the study area. 
These APIs return the location of the nearest point 
where a panoramic image exists, along with a unique 
identifier called "pano_id" (see Figure 4). 

 
The set of queried points was generated by 

subdividing a road network shapefile every 8 meters 
(which is the approximate spacing between Google 
Street View images). Figure 5 shows all the available 
points and the date when the images were captured. 

 

 

Fig. 5. Available 360 panoramas. 

 
The locations of the obtained 360-degree images 

are provided in latitude and longitude coordinates 
using the WGS84 unprojected coordinate system. 
According to the documentation, these coordinates 
are not the original ones captured at the time of 
acquisition but have been adjusted to align with the 
road network. 

 
To retrieve more detailed parameters for each 

panorama, Google Tiles API was used. This allowed 
access to the original capture coordinates, gyroscope 
information (rotation angles around each capture 
axis), azimuth, and other relevant metadata. 

 
2.2.2. 360 IMAGERY PREPROCESSING 
 
All tiles for each panorama were generated and 

merged to reconstruct the complete image. 
Additionally, each image was corrected using two 
parameters obtained from the associated metadata: 

 

• Tilt: The tilt of the panorama, measured in 
degrees from the south pole of the 
panorama to the horizon. 

• Roll: The clockwise rotation around the line 
of sight that was applied to the panorama to 
level the horizon. 

 
Due to the urban configuration, where buildings 

are attached to each other, it is necessary to 
individually identify each structure. In the study 
"Automated Building Structural Parameters 
Extraction for Seismic Risk Assessment in Villa El 
Salvador Area" [19], several instance segmentation 
models with classifiers backbones based on 
Convolutional Neural Networks (CNNs) and Vision 
Transformers (ViTs) were trained to segment and 
isolate each building, as shown in Figure 6 and Figure 
7. 

 

 

Fig. 6. Google 360 panorama. 
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Fig. 7. Segmented buildings. 

 

 

Fig. 8. Centered building images. 

 
Subsequently, several CNNs were trained to 

identify five structural parameters related to 
estimating seismic risk in buildings, one of which is 
the number of floors (see Figure 8). This parameter 
will later be used to train a linear regression model to 
obtain a more accurate prediction value. 

 
2.2.3. PROPERTY ASSIGNMENT 
 
Once the building has been identified and the 

number of floors classified, the next step involves 
assigning this value to the cadastral database. This 
process consists of several steps: 

1. The building mask is transformed from a 
planar projection to its original 
equirectangular projection (blue polyline). 

2. The center of the façade is determined by 
drawing a horizontal line (red line) 
approximately 1.5 meters above the base of 
the mask and finding the midpoint (yellow 
point) of the intersection, as shown in Figure 
9a. 

3. After establishing the direction toward the 
building, it was overlaid onto the cadastre, 
and the number of floors was assigned to the 
first lot it intersected. 

 

 
(a) 

 

 
(b) 

Fig. 9. (a) Centered building images and (b) Lot assignment. 
 

As shown in Figure 9b, assigning the number of 
floors to a lot is not unique; rather, it varies 
depending on the availability of 360-degree images 
surrounding the building. This situation leads us to 
propose a method to determine the final assigned 
value for the number of floors. The proposed 
equation establishes that if the number of predictions 
is exactly two, the prediction with the highest 
probability score should be chosen. If more than two 
predictions exist, the mode is selected if at least one 
repetition occurs; otherwise, the prediction with the 
highest probability is chosen. 

 

𝑁𝑓𝑙𝑜𝑜𝑟𝑠(𝑁𝑝𝑟𝑒𝑑𝑠) = {
𝑎𝑟𝑔𝑚𝑎𝑥(𝑝𝑟𝑜𝑏𝑝𝑟𝑒𝑑𝑠), 𝑁𝑝𝑟𝑒𝑑𝑠 = 2

𝑚𝑜𝑑𝑒(𝑝𝑟𝑒𝑑𝑠), 𝑁𝑝𝑟𝑒𝑑𝑠 > 2
     … (2) 

 

3. STUDY AREA 
 

The study area is in the district of Chorrillos, Lima, 
Peru. According to the sectorization map extracted 
from the urban development portal of the district's 
municipality, it includes three urban developments: 
"Los Cedros de Villa", "Fovipol" and "Villa del Mar" 
along with a small section of condominiums. 

 
The total area covers 1.16 km² (Figure 10) and 

consists of 3,344 lots designated for various uses, 
including residential, commercial, recreational, 
educational, and health purposes. 

 
This urban cluster was selected due to its 

significance for studying damage caused by both 
earthquakes and tsunamis. According to [20], 
Chorrillos is the district with the major quantity of 
dwellings exposed by tsunami inundation in 
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Metropolitan Lima Area with 51,414 people and 13,912 
dwellings exposed to tsunami and the selected urban 
developments for this study would be completely 
affected by tsunami inundation [21] under the 
scenario proposed by Jimenez et al. [22]. 

 

 

Fig. 10. Study area 

 

4. RESULTS ANALYSIS 
 
4.1. COMPARISON OF METHODS 
 

The results of applying both methodologies are 
visualized in the confusion matrices (Figures 11 and 
12). As observed, the CNN-based method fails to 
identify lots that are vacant land (undeveloped) and 
is also unable to detect buildings taller than five 
floors. 

 
 

 

Fig. 11. Normalized confusion matrix with aerial images. 

 

 

Fig. 12. Normalized confusion matrix with 360 images. 

 
 
Despite these limitations, the CNN method 

demonstrates greater accuracy compared to the 
photogrammetry-based approach. This improvement 
is primarily because the floor count is based on 
structural floors, considering: 

• Incomplete constructions without a finished 
roof. 

• A floor is counted if at least 50% of its area is 
built. 

• The model ignores upper floors made of 
lightweight, removable materials such as 
drywall, wood paneling, Superboard, or 
other similar materials unless the floor 
directly below is built with a more resistant 
material, such as masonry. 

 
4.2. COMBINATION OF METHODS 

 
Since two lists of predicted values are available, a 

method is proposed to combine them into a new list 
that will represent the results of both methodologies. 
This will be achieved through the application of linear 
regression models. 

 
The training and validation datasets will be 

obtained by splitting the list of values predicted by 
the CNN into 80% for training and 20% for validation. 
 

The models used include: 

• Logistic Regression with a maximum of 
1,000 iterations, C = 1, and the lbfgs 
optimization algorithm. 

• Random Forest with 100 estimators. 

• Gradient Boosting with 100 estimators and a 
learning rate of 0.1. 

• AdaBoost with 100 estimators and a learning 
rate of 1. 

• Support Vector Machines (SVM) with C = 1 
and an RBF kernel. 
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• k-Nearest Neighbors (k-NN) with 5 
neighbors. 

• Multinomial Naïve Bayes, specifically 
designed for discrete data. 

 
Once the proposed regression models were 

trained, it was verified—according to the 
performance metrics presented in Table I—that the 
Random Forest model achieved the best 
performance, obtaining an accuracy of 0.861. 
Consequently, the trained model was evaluated on 
the validation dataset, and the resulting confusion 
matrix is presented in Figure 13. 
 

TABLA I 
Comparison of performance metrics between all linear 

classification models.  

Model Accuracy Precision Recall F1 

Logistic 
Regression 

0.854 0.898 0.844 0.864 

Random Forest 0.861 0.886 0.874 0.878 

AdaBoost 0.776 0.674 0.566 0.539 

SVM 0.856 0.900 0.848 0.848 

k-NN 0.759 0.832 0.787 0.867 

Naive Bayes 0.853 0.868 0.869 0.800 

 

 

Fig. 13. Normalized confusion matrix with aerial and 360 imagery 
trained with Random Forest linear regression model. 

 

Table I presents four performance metrics: 
accuracy, macro precision, recall, and F1-score for 
each regression model. These values indicate that the 
Random Forest model achieves the best final fit by 
utilizing both sources of information: aerial images 
and street-level panoramic images. 

 

4.3 BUILDING FLOOR COUNT SURVEY USING 3D 
MODEL 
 
The use of three-dimensional representations for 

obtaining building information is a widely adopted 
technique with high accuracy. The most used product 
for this purpose is the point cloud; however, 

advancements in drone sensor technology and new 
data acquisition techniques have enabled the 
generation of high-quality 3D meshes. This facilitates 
visual inspections for evaluators using tridimensional 
models. 

 
In this study, a photogrammetric restitution 

program was used to generate a 3D mesh in OBJ 
format from aerial photographs captured by drone. 
Additionally, this model was shared with surveyors 
through an online viewer (Figure 14) to determine the 
number of floors for each building within each lot 
(see Figure 15). 

 

 

Fig. 14. Online viewer for tridimensional model. 

 

 

Fig. 15. Tridimensional model for lot N°80. 
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5. SEISMIC ASSESTMENT 
 
The seismic risk assessment considered three 

seismic demand levels: severe, rare, and very rare 
[23], corresponding to average return periods of 475, 
975, and 2,475 years (with 10%, 5%, and 2% probabilities 
of exceedance in 50 years). 

 
Based on the Peruvian Earthquake-Resistant 

Design Standard (NTE-E030-2018)[24], these 
scenarios resulted in maximum ground accelerations 
of 441, 574, and 662 cm/s² on rigid soil profiles, 
respectively. Soil amplification factors for the study 
area were applied to estimate surface-level 
accelerations. 

Risk estimation was performed using SRSND 
software by Zavala et al  [25], previously validated 
with damage data from the 2007 Pisco Earthquake . 
Risk was quantified as repair costs relative to original 
building costs, calibrated using observed damages 
from the Pisco event. Additional vulnerability studies 
by CISMID refined these repair-cost thresholds [26, 
27, 28]. Table II summarizes the risk classification 
based on and Figure 16 shows the spatial distribution 
of seismic risk according to the three levels of 
demand. 
 

TABLE II 

Classification of risk levels based on estimated repair cost.  

Model Repair cost Associated damage  

Level 1 <15% 
No damage, slight 

damage 

Level 2 15% - 30% Light damage 

Level 3 30% - 60% Moderate damage 

Level 4 60% - 85% Severe damage 

Level 5 >85% Collapse 

 

 
(a) 

 
(b) 

 
(c) 

Fig. 16.  Spatial distribution of seismic risk at the lot level. a) 
Tr=475 years, b) Tr=975 years, and c) 2475 years. 

 

 
6. CONCLUSIONS 

 
Photogrammetric restitution from aerial 

photographs captured by drones is a cost-effective, 
fast, and accurate technique compared to other 
building survey methods. This approach is particularly 
useful for the development of urban inventories 
aimed at various fields, such as Disaster Risk 
Management, where spatial information and building 
characteristics are key factors in determining risk 
levels. 
 
Using the method based on photogrammetric 
products, the highest accuracy was obtained for 
vacant land (92%), while the lowest accuracy was 
observed in five-story buildings (66%). 
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Using the CNN method based on 360 imageries at 
street level, the highest accuracy was obtained for 
two-story and three-story buildings (85%), while the 
lowest accuracy was observed in five-story buildings 
or tallest (75%). 
 
Combining both methods, the highest accuracy was 
obtained for vacant land buildings (100%), while the 
lowest accuracy was observed in one-story and three-
story buildings (83%).  
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